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Abstract.

We address the problem of volume reconstruction from a sempuef cross-sections in the
case where the cross-sections positions are unknown. fipéies to perform simultaneously
registration and reconstruction. We propose a statistaratulation of the problem leading
to an energy minimisation algorithm as well as an automalibration procedure for the
energy parameters. This method has been developed in ttextofimicro-rotation confocal
microscopy. Experiments in this context illustrate theligbof this method to reconstruct
efficiently the object of interest.
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1. Introduction

We address the problem of reconstructing a 3-D volume ohsities (3-D image) from a
sequence of 2-D cross-section images called slices. Tstridite this problem in a simple
context let us see Fig.1 which shows a 2-D reconstructiom feosequence of 1-D cross-
sections (profile lines). The initial reconstruction of #i2image from the badly posed profile
lines is of rather low quality, (Fig.1c). The main difficulily performing the reconstruction
is that the position of each slice is unknown. If these posgiwere known, the problem
would be similar to an interpolation/smoothing problem. e other hand, if the 3-D
image was known, the estimation of the position of a paricslice, would reduce to a
registration problem. So, we need to couple these two sablgams in a common formulation
which implies performing simultaneously registrationiqsl positioning in our case) and
reconstruction.

The method we propose is generic. It has been designed inhilg taking into account
the specifics of our domain of application, that is, micrtatimn confocal microscopy. We are
concerned by 3-D fluorescence imaging of individual livirmpradherent cells in the goal of
multi-dimensional measurements [2], [1]. Several profgofa 3-D cell representation have
been presented in recent years but all these techniquesafeethe cell in some orientations
and thus, they are limited to adherent cells [3], [4], [5], [@], [8]-

Our confocal microscope is equipped with a dielectrophoréeld cage wherein
suspended cells can be trapped and then automatically olatgd [9]. Once an individual
cell has been trapped, the parameters of the dielectrophéiedd are ruled in order that the
cell undergoes continuous rotations around a main@ax@uring the rotation, a sequence of
microscopic images, called micro-rotation images, arepdaghat a given rate. Each slice
is an image taken under the same microscopic conditions. sA dilvantage of such an
apparatus is the ability to see non adherent living celleuddferent views without having to
manually manipulate them. However, analysing such a 2-Desatg and mentally inferring
3-D structures is not an easy matter (see Fig.2). We need pletaigital 3-D representation
of the cell which can allow for inspection and measurement.

In the case of micro-rotation microscopy, the rotation nmgat (axis and angular
velocity) is unstable and corrupted by erratic small tratishs. More generally, the position
of every slice is completely defined by an unknown rigid tfarmeation combining rotation
and translation with respect to a coordinate frame. Thidals movement makes slice
motion estimation and volume reconstruction a challengirgdplem. Our results show that
this problem is feasible with accuracy, a fact of which welited when we have started this
research five years ago.

Before going into the specific application, let us mentionesal fields which at first
glance share some features with this problem. In aerial imgagimultaneous registration-
restoration has been studied to achieve super-resolut@n [n this case, registration deals
only with very small two-dimensional translations and thegose of the treatment is directed
more towards fusion than reconstruction. In robotics,&tme From Motion techniques try to

1 More imaging acquisition detail can be founded in http:/iwpfid.org/AUTOMATION/gallery/PEcelll.shtml
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compute the external structure of a rigid object from theiamoof its geometrical projections

onto a 2-D surface [11], but not its internal structure. Aligh we have not exactly found
the same problem in the literature, it is interesting to nénthat there are similar problems
in the projection tomography domain (e.g. electron micopgcconventional X-ray imaging

systems, etc). The methods to treat these related problenesther based on the matching
of projection moments according to the Helgason-Ludwigdiions (see [12, 13] in 2D case
and [14] in 3D case), or based on the spatial relationshiprdebation from the common

lines shared by any projection pairs in Fourier space thamkke central section theorem
[15, 16].

The performance of common line based methods are howevigedirny the low SNR
measurement of the microscopy imaging systems. The morhasésl algorithm [13] for 2D
tomography needs an initial translation estimation. Tletions are first estimated by shifting
the center of mass of each projection to the origin. In the cddluorescence mycroscopy,
this approach is not valid since the center mass of each 2Bislinot related to the center of
mass of the 3D cell. Furthermore, slices are optical crossoses which are different from
a line integration process as in the case of projection toapy. Therefore, we have not
found treatment to express the dependence between slit®psand slice measurements or
extracted features as done in [13].

Below, slices positioning and volume reconstruction wdldriven by spatial constraints
on volume coherence through a functional linking positiowl &oclume. To measure this
coherence between registered slices, a continuous voluatlnis indispensable which
means that alignment and reconstruction are interwovesteda of working directly on the
common spacé.?, we restrict the unknown volume to be in a Hilbert sp&¢essociated
with a reproducing kernel. In the work of G. Matheron [17} quivalence between spline
and kriging is well established. Therefore, the a priori elogh volume to reconstruct is
in fact posed as a Gaussian random process whose covariamieh defines the spatial
dependency. The regularity of the volume is then maintaidedng the simultaneous
estimation of both volume and slices positions. In Sectipaffer stating our problem, a
probabilistic framework is introduced to model both thd ¥elume structure and the slice
positions. Volume reconstruction including parametetsregion and slice positioning is
performed in an integrated statistical framework. A vamia&l formula is derived in Section
3. To remove the painful trial-and-error process of tuniogfticients of energy terms, an
automatic statistical estimation of parameters via maxmtikelihood principle is proposed
in Section 4. Experimental results are given in Section 5.

2. Problem statement and statistical model description

2.1. Problem statement

A sequence of image slicds= (/;),<;<x is obtained through a fixed plarf, intersecting
the moving object. In microscop¥, is the focal plane. Fig.2 shows twelve slices acquired in
H, (~340 slices per tour) of a cell in rotation. The images areealbrded in a same frame in
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(a) True imagef (b) True slice po- (c) Initial reconstruc- (d) Fifth and last re-
sitions{¢; } tion construction

Figure 1. A 2-D reconstruction example.

(b)

(9) (h) (i) ) (k) o

Figure 2. 12 micro-rotation slices from a real confocal microscopgpgimg data sequence.

H, and consequently their position inside the object is unknothis situation is equivalent
to the situation where the object is fixed aAg is moving. For pose estimation, the object
is considered as fixed and then for every image slice, we lséarche displacement which
moves this image froni/, to its right position inside the object. So, we have to estintlae
slice positions represented By affine transformation® = (¢;),<;<y and at the same time,
the continuous 3-D imagg whose cross-sectiofio o; at positiony; is close to the observed
imagel;.

As mentioned in Introduction, the difficultly here is thatayeroblems which are well
known and have already been intensively explored are congeul If the affine parameters
® were fixed, the reconstruction g¢gf would be an interpolation/smoothing problem from
irregular data (see [18] and the references therein). Oottier hand, if the true volumgwas
known, to find the true position of each slice would be a rigigistration problem as solved
in [5]. We propose a statistic model for both volume recarton and slice positioning; this
yields a variational approach based on a posterior joirttgdodity density of® and f.
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2.2. Statistical modeling

We assume that the movement of the object corresponds todamaperturbation around
a mean movemenb’. We suppose also thdt’ is given or can be estimated as it is the
case in micro-rotation microscopy. Now, given the data{dgt, the task is to estimate the
transformationsb more accurately in such a way thato & ~ I, and at the same time to
reconstruct the volumé. Classically, this problem can be formalized in the framewaf
"inverse problems” [19]. The basic idea is to define an asprimdel for the pair( f, ) and

to estimate f, @) by Bayesian inference. Here this consists of choosing théisn (f, <i>)
that maximizes the a-posteriori probability (MAP criter)o

(f, &) = argmax; o P(f, ®|1)
P, @) P(f)P(P)
P(I) '
We now provide general expression®f!|f, ®), P(f) andP(®).
e First, the imagd; is seen as a noisy version /b ¢;, with some additive noise:

Ii(z) = fopi(zr)+€(x), VoeH,. 2

We assume that differencds;(z) © € H,} are independently and identically distributed
according to the Gaussian laW/(0, o2), and consequently the probability distribution ipf

given(f, y;) is

= argmax; 4

(1)

P(L|f, ¢i) o exp(— ZII (@))*/o?) - ®3)

Furthermore, we assume that sllc{els} are conditionally independent givérf, ¢) which
implies

P(I|f,®) = HP Ll f, 1) -

e Second, we have to define a prlorﬁ.nln our context, this definition is crucial since the
role of the prior is to insure smooth reconstruction by iptéating sparse and non organized
points and also by this way to quantify the regularity of tbéume. For non organized points
smoothing, a well know approach is the "kriging” technig@8,[21] which can be efficiently
rewritten using a Reproducing Kernel Hilbert Spagg RKHS) formulation [22] (see [23]
for the tomography domain). This is quite technical. Brieffyis represented by a linear
combination ofN. elementg:(xz;, -)1<i<n, INH :

FO = Y aik(wi,-), 4)
1<i< N,

wherek(-, -) is a kernel function modeling the spatial dependency within

k(z,y) = p(l[(z —y)Il/Ar) - (5)
With this definition, the unknown continuous volunfes replaced by the unknown set of

parameters$a; ). As in the case of kriging, we have chosen the Gaussian fumtar p. A, is
a scale parameter which defines the range of the spatial depey) as a covariance function
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does.The control pointgz;) in (4) are chosen at 3D regularly spaced grid locations cavgr
the region in which the volume reconstruction has to be ddme grid resolution is defined
by N. and is equivalent to the image resolutionWith this definition and the reproducing
property ofH, that is(k(z;, .), k(z;, .))» = k(xs, ;), the norm off is

1115 = Y k(i ;)
irj
Finally we define the Gaussian prior grby

P(f) x exp(—11). ©
f

where aj% is a regularization parameter which tunes the amplitudehefvariations off.
Greater is the probability, and greater is the regularity @fith respect to the kernéi.

In summary, the role of this model is to quantify the regijaaf the volume through
Gaussian structure, and also to treat the interpolaticmdsining task, a difficult task since here
the data are badly distributed : in the case of object iniatatmany data points are present
around the rotation center whereas far from this centea, plaints are very sparskeet us note
that the simplé.? norm|| f|| as in [24], would not be suitable. In short, (1) leads to miiden
in f (when thep,’s are fixed) the energf(f) = S~ | > wem, [1i(x) = fopi()* + A1 fIIP
wherey = o?/07. Since there is no data between slices, the minimjzef this function
tends to be abnormally small at these locations. Note mop®rtantly that the energy is
actually not defined on thie? space since data term is depending only on the valuesam
a negligeable set for the 3D Lebesgue measure . Of course) degenerated solution could
be obtained if we restrict the optimization to a finite dinienal subpace of.? as given by
the parametric formulation of (4). However, the dimensidpaV.. of this subpace will then
be a regularization parameter to be estimated in additiothi@® scale);. In constrast, the
natural RKHS norm associated with the kerkak stable for increasingV, values provided
that the sampling is fine enough with respect to the saaleMorever, the use of the RKHS
norm is mandatory to make the proper link with the statigticamework we are developing
hereafter for the estimation of parameters.

In this way, many papers have demonstrated the necessitytrtaduce prior spatial
dependency in tomographic reconstruction ([25, 26] amoagyothers).

e Third, for the prior P(®), we assume that the,’s are independent isotropic
perturbations of the mean positiop$, that is:

N
P(®) = Pus(®) = [ Pl
i=1
Models based on more sophisticated assumption could bgraeksbut we have found that
this simple independence assumption allows in our caseatecwwlume reconstruction. Each
affine transformationg; is composed of a rotatioR; and a translatioh;, which codes thé”
slice position with respect to the frani&. The chosen model is

P(p?(@l) X exp(_d2(¢i7 90?)) )
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where

(R, RY)  d2(b;, VY
(B ) | (0,1) .

2
04 Op

d* (i, 7)) =

andc? and o} are variance parameters which express how far the affinsftramation
is allowed to deviate from the mean positioh The distance between two rotations is the
common geodesic distance which is invariant to right/lefation multiplication:

d(R, R) = cos™ (”ace(R(R’)‘l) -1 m:3> |

2

wherem refers to the dimension of rotation matrix (2 or 3). Finalhge distance between two
translations is the common Euclidean distadt®, ') = ||b — '||..

3. Variational formulation

Given the priori and noise models as defined above, the MABrmn (1) can be expressed
as a variational problem for which the solutiph <i>) minimizes the energy

1 1
i=1 f

1 N
Fa 2 2 Wl = er ®
To minimize 7, we use a gradient-descent based method defined as
Pt + 5t)) (CI)(t)) Vo
- - ot . 9
<f<t +0t) f(t) Viwd 9)

We therefore need to express the two partial gradiepts? andsy ;.7 .

3.1. Expression fory ;7

Due to (4), the calculation ofy ;7 can be reduced to a finite dimensional computation.
Everything can be expressed in termswof= (o;)1<;<n, and the gradient is computed with
respect tay, §. We then have

VaJ = 0;2Koz + AT(Aa —1)/o?, (10)

where
K = (k(%i,25)) 1< j<ne
A = (k(pi(s), xj))lgiSN,seHo,lﬁjSNC
I = (Ii(s))1<i<n,seH, -

§ It is proved in [17] that if thex; are given as the current positions in space of all the sligelgi then the
optimal solution inf, ® fixed, can be expressed as (4)
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3.2. Expression fot/ ¢ J

The partial gradient; 4.7 is further decomposed into two terms: one for the rotatiamoted
by vrJ (in fact a family (<7 r,J )1<i<n) and another for the translations denoted<py.”
(also a family). It is straightforward to writg7, J directly from (8) since it involves only
functions based on common Euclidean scalar products. (s re

g = B0y V) 2 B@) o ) (11)

g g
b rEHy €

To deduce the partial gradient with respect a rotatign keep in mind that we are
computing a derivative on a Lie group and not a vector spane2-D, the representation
of rotations by their angle allows for a simple derivationmire sophisticated derivation in
the 3-D case is detailed in the following proposition whosaopis given in Appendix.

Proposition : If R — F(R) is a smooth valued function defined 8nx 3 matrices
andg—g = ( o )1<ij<3 IS the matrix of partial derivatives df , then its gradient relative to

OR;;
variationwithin the group of rotation§O(3) is
VrF =vViF AR (12)

wherev4F =157 | R; A (25); (operator) ; extracts the matrix's” column.)

3.3. Optimization procedure

The gradient-descent algorithm (9) alternates betweeatigrasteps o® parameters and on
« parameters (i.e., the volum®. For a generic slice, if we omit the indexi for sake of
simplicity, following (9) and (12), the current rotation tria value R(t) at timet is updated
by

R(t+ dt) = R(t) — (V3J N R(t)) ot . (13)

Because of the presence &f we have used the matrix exponential form [27] in order to
guarantee that the updatét¢ + ¢) stays in the rotation group without having to make re-
orthogonalisation from time to time:

R(t +6t) = exp(=[0t Vi T]x) R(1) (14)
where[a]. denotes the skew-symmetric matrix associatetuto .). In fact, this formula
is a first order Taylor's approximation of (13) obtained frahe expansion of the matrix
exponential exp(M) ~ I + M (I is the identity matrix).

Since the energy terny w.r.t o is a quadratic term, then from (10) updatingis
straightforward. Fixingb at ®(¢) and thusA to A(t), it has an analytical solution:

a(t) = (07202 K + ATA)TTATT . (15)

The positive definite kernel functidk(-, -) guarantees the uniqueness of the solutiaf. To
overcome the numerical bottleneck in 3-D due to the largeevaf N and the non compact
support of Gaussian kernel family, we have implemented aifiedd~ast Gauss Transform
(FGT) algorithm [28] and integrated it in the conjugate geat method to solve the linear
system in (15).
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Moreover, updating®(¢) involved in (11) and (14) benefits also from the FGT
implementation thanks to the close form 95 7. To speed up the convergence rate
of estimating the nonlinear parametargt), Levenberg-Marquardt (LM) algorithm [29] is
adopted to determine explicitly the stép The mixture optimization procedure combining
conjugate gradient method and LM algorithm guaranteekitstitonvergence, at least to a
local critical point. With this coordinate-wise procedure the energy term is esing at
every step except at the end, near the solution, when theegraldecomes too small to be
numerically approximated with accuracy. At this point, pfrecess is stopped without loss of
accuracy.

Our current implementation on a standard personal comp8&6 GHz cpu, 4GB
memory and Matlab on Linux environmghtrequires about one hour per iteration of the
optimization procedure (8) for a volume of siz¢’ from a sequence df30 images of size
50 x 50. Fig. 3 plots the energy curve for 20 iterations. One see #fidr only 5 iterations
the energy level reaches a stable value close to its finalargewnce value.

x10°
T

L L L T L L k|
2 4 6 8 10 12 14 16 18 20

Figure 3. Energy curve for the reconstruction of a volume of sizé

4. Parameter calibration

One recurrent hurdle in energy based optimization mettsitheiproper choice of parameters.
The variance parametesg ando? on the initial guesses (see (7)) can be fixed franori
knowledge on their uncertainty. More difficult and crucialthe calibration of the other
parameters such as the hyper-parametérSO—J%, (see (3) and (6)), which are essential to
achieve correct slice positioning and good reconstruction

We take advantage of our modeling framework to derive a Bagesstimate of the
unknown parameters. In this framework, the priori inforimais mainly given by the kernel
model (5). Indeed, it is well known that this kernel inducesogariance structure ofi[22].
For our application, the central point is that, thanks tortitation and translation invariance

|| There exists other solutions such as MPI or GPU parallel etatipn to acceleration of optimization, but
they are beyond of the research scope of this paper.
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of this covariance structure, for any positionipgof slice, the vector representation of the
slice F; = {f(¢i(xs)) }sen, IS @ Gaussian vector with covariance matridependenof ¢;:

cov(Fy(s), Fi(t)) = afp(lleilxs) — @il ll/Ar)
= applllws =zl /Xs) -
Furthermore, we assume that its mearis constant. Thus under the model assumptions (2),

the observed imagé = F; + ¢; is a Gaussian vecto¥ (u;1y,,y) where the covariance
matrix I'y is explicitly given by

Lo(s,t) = app(llws — 2l /Ar) + 0L
where the unknown parameters are now denoted

0= (,uf,aj%, A, 02) .

This brings us to a more classical framework of non linearaggjon wheré@ can be chosen
in order to optimise the log marginal likelihood 6f

1 - 1
log P(L10) = — (L — 1y L, T3 (I = iy L,) — 5 log(ITol) + Cte

€

In fact, we use the whole sequence of images, using a conditindependence
approximation for thd,;’s so that finally
N
0 = argmax, Z log P(1;]6) (16)
=1

By settings/g log P(I;]0) = 0, it yields:

fig = (11T 1) /(11T
62 = (I — )" (To/0?) ™" (T, — fjis1)
log P(I;|0) = —3(Nlog o? + SV log,) + Cte.

where eigen-valuegy;) come from the spectral decomposition Iof [30] and Cte is a
constant. In such a way, there are only two independent pesm scale factoy, and signal-
to-noise ratiofj% /o2 to be estimated numerically. In order to further reduce tregexity, we
split each/; into a stack of sub-imaged; » } of smaller size and minimizg_, , log P(/; x|0).

5. Experimental Results

Fig.1 describes a simple experiment in two dimensions. iGikie 1-D slice sequence whose
true positions are depicted in Fig.1(b), alignment and metraction have been computed
using the technique described above. For the initial posiii(0) of the gradient-descent
based optimization procedure (9), we have assumed stafalgoroand no translation. In
Fig.1(d), we see that after five iterations, the estimatesitipms ®(¢) converge closely to
their ground-truth since the reconstructed object is clogke true object whereas wit(0)
the reconstructed object is quite degraded (Fig.1(c)).
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(b)

(h) @

Figure 4. 2-D reconstruction results with different level of noisest each row, one reads the
noisy true image, the reconstructed image without posigistimation and the reconstructed
image with position estimation. 1D cross-section posgiare those shown in Fig. 1(b). The
noise levels are : (ay. = 0.20, (d)oc = 0.404, (g) 0c = 0.7507.

position error with estimation

— — — position error without estimation

25 B 4
2 |- T T 4
. _
(%]
g _
[hq | E—
15+ T — T
— (I 4 - 4
1+ \ 4
05 1 1 1 1 1 1 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Figure 5. Empirical curve of the position error and its associatedogrinterval (drawn as 4
times the standard deviation).
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Moreover, an experiment has been done to test the stabflitiyeomethod with regard
to different noise-signal ratios ¢./o; = 0.2, 0.4, 0.75. On Fig. 4, we see that the quality
of the reconstruction is better after alignment than beforéowever this improvement is
reduced when the noise-signal ration becomes too largehénektreme case the positions
are blurred by the noise and are no more perceptible. Theeneffect has been analyzed
by Monte Carlo computation. For every fixed noise-signalorad sample of 20 different
independant realizations of the i.i.d. additive noise avesidered. Our procedure was then
run on this data set and from the results, the empirical melathe position error and its
standard deviation was computed (see Fig. 5). Since in imsllation test, both the true
positions and the initial positions of 1-D slice sequence fated, the position error without
estimation represented in the dashed line is constant andailue is 2.16 in our case. The
RMSE is reduced by a factor 2 for moderate SNR, %‘e.g 0.2. Another important remark
is that during all the simulation test experiments, the paegers are auto-calibrated exactly
by the method described in section 4.

We describe now a complex experiment in micro-rotation #isoence microscopy. The
real data shown in Fig. 2 (sampling from one tour of 340 s)ieess acquired from a living
cell cage and suspended i@gtocon™ chip (Evotec Technologies, Germany) to investigate
the localization and dynamics of nuclear lamina and greemdkcent protein (GFPY.

Before launching the reconstruction-alignment couplingcpssing, the parametefis
needed for the variational formula are estimated by the atgphoposed in section 1V, on 100
blocks of30 x 30 uniformly distributed in all 340 slices (the size of eacltslis156 x 156).
The parameters are estimated by MLE criterior@as= 9.75 x 10° 02 = 3.36 x 10° and
Ar = 3.5. The remaining two variance parameters coding the instabil the movement
away from the ideal trajectory are set@&s= 10.0 ando? = 10.0. The initialization of the
ideal trajectory is determined from the hardware controhda@ the cell is trapped inside the
dielectrophoretic field cage, the biologist adapts the fi@ldrder that the cell undergoes
a rotation movement around an ideal fixed axis : ideally ansaxithin the focal plane.
This axis is parameterized and we use it to deterndifie We have run the optimization
procedure determined by (9) for 5 iterations. Each iterationtains a subroutine of volume
reconstruction driven by conjugate gradient method witedif0 iterations and a subroutine
of slices alignment driven by Levenberg-Marquardt methaith @0 — 200 iterations which
depends on the distance between the initial and final valiug&es positions.

In order to have a fair validation of the reconstruction lobse micro-rotation data, we
provide also a reconstruction based on the state-of-aackgmaging techniques. The z-stack
data have been acquired in suspension mode af thiecon™ chip now controlled by a piezo
motor to displace the whole cage. With this mode, the sliceparallel and their z-positions
are known!t Here, volume reconstruction is standard’he slice comparison between

¢ These confocal images were then collected using a Zéissvert ™ 200 confocal microscopy. For the
optical parameter setting, a 63x water immersion objedtvgsed and numerical aperture (NA) is set to 1.2.
Finally, the resolution of each optical section image isrr@%nd the chip driver gives us the mean rotation
direction projected in 2D optical section (it is y axis or tveal direction in this case study).

T The step between two planes along z direction is set to 100w &1 slices were obtained for the same living
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conventional z-stack and micro-rotation imaging is doneskiracting two orthonogal slice
pairs using ImageJ’'s MedNuc OrtView plugin (see Fig. 6). TEhstack was deconvolved
whereas the micro-rotation volume was not. In these corandl sagital views, the nuclear
envelope contour from micro-rotation imaging is much betisualized than those from z-
stack imaging although micro-rotation volume is not de@dwed (see contours marked by
arrows). The small hole in the contour (marked by a rectangfeéhe micro-rotation volume
is due to the so-called "blind-cone” phenomena : when thation axis is not living in the
focal planeH,, the interior of the cone generated by the rotation axis issampled during
the micro-rotation process. In fact, it can be removed byodgolution of the reconstructed
volume, [/l [?]. The micro-rotation volume is rendered in the same viewingadion as
that the z-stack data (its size 189 x 109 x 181) which is shown in Fig.7. The positions
of each slice coded by rigid transformation parameters laoes in Fig.9, which represents
an irregular perturbation in agreement with physical meddihis irregular perturbation is
apparent on Fig.2, in particular from instant (j) to (k) (tgre jump). Note that this jump is
well detected on the position parameters in Fig.9.

A deeper biological evaluation is beyond the scope of thiep]. However, to explain
the difference between the two reconstructed volumesslgtue two mains drawbacks of the
z-stack mode. First, contrary to the micro-rotation motdoes not deal with the problem of
anisotropy of the microscope resolution: the resolutiapeedicular to the focal plane is half
of the resolution within the focal plane [31]. Second, itfets from geometrical distortions
. a spherical object does not appear spherical. It is clean the rendering volume viewing
shown in Fig.7 that the reconstruction quality from micodation slices is better than those
from deconvoluted z-stack slices: not only it gives theudal membrane which is missing
in the z-stack volume, but also the geometrical distorseursed by spherical aberration has
been reduced.

(b)

Figure 6. Slice comparison between deconvolved z-stack and mitatioo imaging. (a)-
(b) Two orthonogal slices from z-stack deconvolved by SWgdns software. (c)-(d)
Corresponding orthonogal slices from micro-rotation volel (without deconvolution).

cell as that used in micro-rotation mode.
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() (b)

Figure 7. 3D volume rendering using OsiriX software projected on aes&mwing position.
(a) From conventional deconvoluted Z stacks. (b) From therariotation volume.

(9) (h) (i)

Figure 8. Slice comparison. Firt column : original slice. Second column : slices
interpolated from the reconstruction volume at the estedapositiong;. Third column :
slices interpolated from the deconvolved z-stacks atiposit;.
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initial rotation trajectory
— — — estimated rotation trajectory
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Figure 9. Rigid transformation estimation of the 340 micro-rotatislices position
parameters: (a) translation of each slice (b) trajectoneggted from the 340 rotation matrices
given by each slice position acting on a unit vedtad 0]°.

6. Conclusion

In this paper we have demonstrated that it is possible tmparkimultaneously alignment

and reconstruction. Of crucial importance is the abilityperform parameter calibration

in a statistical framework, as well as the explicit modelofcall aspects of uncertainty. It

should be emphasized that even with low resolution, the glasitioning parameters can be
accurately estimated. The current reconstruction resalikl be easily improved by a second
reconstruction step at high resolution with the slice pos# frozen at their estimated values.
However, a more principle route to deal with the computatidourden of high-resolution is

to adopt the multi-resolution strategy. In our case, it tsissf representing the volume by
a combination of kernels at different scale spaces. Moreibgbould be able to avoid local

minima during the optimization phase.

7. Appendix

Proof
Lets us start with the derivate of the regular functiof?) defined on the space 8fx 3
matricesM;3(R). Looking R as a function of the time, the derivate at tinges :

d OF

EF(R@))&O = <ﬁ<R0)7 Ro)paxs a7)
where Ry, = %R(t)tO .

In fact, we have to express this derivative on SO(3) and maplsi on M3(R).
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The derivativeR of R(t) on SO(3) is well known ([27]). We recall it. By definition, any
rotation R satisfiesR” R = I. The derivative of this equation yieldsR” = —(RR")7. It
follows that) = RR7 is a skew symmetric matrix. Such a matrix can be expressedtira
vectorw € R? : Q = [w] with [w]z = w A z, A denoting the cross product. FroRR” = [w],
we get the result :

R=[w|R. (18)

At this level, a fundamental remark must be done. Around deatity 2(t) = I, the first
order approximation

R(t + dt) =~ R(t) + [w]Rdt

is simplyR ~ I + [wdt]. So, vector space so(3)r|, w € R?} is called the tangent space
at the identity to SO(3). I2(¢) is not the identity, the tangent space is so(3) transpornyed b
R, thatis :Tr(SO(3)) = {[w]R, w € R3}.

Let us come to the gradient &f within SO(3). Now, we know thaR as defined in (18)
belongs tdI'z(SO(3)). With this constraint, the scalar product in (17) can betemit

oF . oF
<ﬁ7R>R3X3 - <P@7

whereP is the projection oriTz(SO(3)). DenotesygF' = P%. Sincesy i F' belongs to
Tx(SO(3)), it exists a vectoty € R3 such that

It implies the following development of the right side of §19
<VRF7 R>R3><3 = <[C&]R, [W]R)RSXS

R)psxs (19)

= 2(®, w)gs - (21)
On other hand, using the propel(ty, bAc)={(cAa,b), the left side of (19) becomes
OF
<ﬁ’ [W]R)gsxs = _ ( ) ,wAR;)

"
=R, ( ) - (22)
Jj=1
Thus, identifying (21) and (22) , we find
3
L1 oF
and recalling 20 we get the final resaj’l;qF =wA R.
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