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Abstract.
We address the problem of volume reconstruction from a sequence of cross-sections in the

case where the cross-sections positions are unknown. That implies to perform simultaneously
registration and reconstruction. We propose a statisticalformulation of the problem leading
to an energy minimisation algorithm as well as an automatic calibration procedure for the
energy parameters. This method has been developed in the context of micro-rotation confocal
microscopy. Experiments in this context illustrate the ability of this method to reconstruct
efficiently the object of interest.

PACS numbers: 42.30.Wb, 45.10.Db, 87.57.nj, 87.57.cf, 87.57.cp, 87.64.mk

Submitted to:Inverse Problems



An Integrated Statistical Approach for Volume Reconstruction from Unregistered Sequential Slices2

1. Introduction

We address the problem of reconstructing a 3-D volume of intensities (3-D image) from a
sequence of 2-D cross-section images called slices. To illustrate this problem in a simple
context let us see Fig.1 which shows a 2-D reconstruction from a sequence of 1-D cross-
sections (profile lines). The initial reconstruction of the2D image from the badly posed profile
lines is of rather low quality, (Fig.1c). The main difficultyin performing the reconstruction
is that the position of each slice is unknown. If these positions were known, the problem
would be similar to an interpolation/smoothing problem. Onthe other hand, if the 3-D
image was known, the estimation of the position of a particular slice, would reduce to a
registration problem. So, we need to couple these two sub-problems in a common formulation
which implies performing simultaneously registration (slice positioning in our case) and
reconstruction.

The method we propose is generic. It has been designed in [1] while taking into account
the specifics of our domain of application, that is, micro-rotation confocal microscopy. We are
concerned by 3-D fluorescence imaging of individual living non adherent cells in the goal of
multi-dimensional measurements [2], [1]. Several proposals for 3-D cell representation have
been presented in recent years but all these techniques needto fix the cell in some orientations
and thus, they are limited to adherent cells [3], [4], [5], [6], [7], [8].

Our confocal microscope is equipped with a dielectrophoretic field cage wherein
suspended cells can be trapped and then automatically manipulated [9]. Once an individual
cell has been trapped, the parameters of the dielectrophoretic field are ruled in order that the
cell undergoes continuous rotations around a main axis‡. During the rotation, a sequence of
microscopic images, called micro-rotation images, are sampled at a given rate. Each slice
is an image taken under the same microscopic conditions. A first advantage of such an
apparatus is the ability to see non adherent living cells under different views without having to
manually manipulate them. However, analysing such a 2-D sequence and mentally inferring
3-D structures is not an easy matter (see Fig.2). We need a complete digital 3-D representation
of the cell which can allow for inspection and measurement.

In the case of micro-rotation microscopy, the rotation movement (axis and angular
velocity) is unstable and corrupted by erratic small translations. More generally, the position
of every slice is completely defined by an unknown rigid transformation combining rotation
and translation with respect to a coordinate frame. This unstable movement makes slice
motion estimation and volume reconstruction a challengingproblem. Our results show that
this problem is feasible with accuracy, a fact of which we doubted when we have started this
research five years ago.

Before going into the specific application, let us mention several fields which at first
glance share some features with this problem. In aerial imaging, simultaneous registration-
restoration has been studied to achieve super-resolution [10]. In this case, registration deals
only with very small two-dimensional translations and the purpose of the treatment is directed
more towards fusion than reconstruction. In robotics, Structure From Motion techniques try to

‡ More imaging acquisition detail can be founded in http://www.pfid.org/AUTOMATION/gallery/PEcell1.shtml
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compute the external structure of a rigid object from the motion of its geometrical projections
onto a 2-D surface [11], but not its internal structure. Although we have not exactly found
the same problem in the literature, it is interesting to remark that there are similar problems
in the projection tomography domain (e.g. electron microscopy, conventional X-ray imaging
systems, etc). The methods to treat these related problems are either based on the matching
of projection moments according to the Helgason-Ludwig conditions (see [12, 13] in 2D case
and [14] in 3D case), or based on the spatial relationship determination from the common
lines shared by any projection pairs in Fourier space thanksto the central section theorem
[15, 16].

The performance of common line based methods are however limited by the low SNR
measurement of the microscopy imaging systems. The momentsbased algorithm [13] for 2D
tomography needs an initial translation estimation. Translations are first estimated by shifting
the center of mass of each projection to the origin. In the case of fluorescence mycroscopy,
this approach is not valid since the center mass of each 2D slice is not related to the center of
mass of the 3D cell. Furthermore, slices are optical cross sections which are different from
a line integration process as in the case of projection tomography. Therefore, we have not
found treatment to express the dependence between slice positions and slice measurements or
extracted features as done in [13].

Below, slices positioning and volume reconstruction will be driven by spatial constraints
on volume coherence through a functional linking position and volume. To measure this
coherence between registered slices, a continuous volume model is indispensable which
means that alignment and reconstruction are interwoven. Instead of working directly on the
common spaceL2, we restrict the unknown volume to be in a Hilbert spaceH associated
with a reproducing kernel. In the work of G. Matheron [17], the equivalence between spline
and kriging is well established. Therefore, the a priori model on volume to reconstruct is
in fact posed as a Gaussian random process whose covariance function defines the spatial
dependency. The regularity of the volume is then maintainedduring the simultaneous
estimation of both volume and slices positions. In Section 2, after stating our problem, a
probabilistic framework is introduced to model both the cell volume structure and the slice
positions. Volume reconstruction including parameters estimation and slice positioning is
performed in an integrated statistical framework. A variational formula is derived in Section
3. To remove the painful trial-and-error process of tuning coefficients of energy terms, an
automatic statistical estimation of parameters via maximum likelihood principle is proposed
in Section 4. Experimental results are given in Section 5.

2. Problem statement and statistical model description

2.1. Problem statement

A sequence of image slicesI
.
= (It)1≤t≤N is obtained through a fixed planeH0 intersecting

the moving object. In microscopy,H0 is the focal plane. Fig.2 shows twelve slices acquired in
H0 (∼340 slices per tour) of a cell in rotation. The images are all recorded in a same frame in
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(a) True imagef (b) True slice po-
sitions{φi}

(c) Initial reconstruc-
tion

(d) Fifth and last re-
construction

Figure 1. A 2-D reconstruction example.

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Figure 2. 12 micro-rotation slices from a real confocal microscopy imaging data sequence.

H0 and consequently their position inside the object is unknown. This situation is equivalent
to the situation where the object is fixed andH0 is moving. For pose estimation, the object
is considered as fixed and then for every image slice, we search for the displacement which
moves this image fromH0 to its right position inside the object. So, we have to estimate the
slice positions represented byN affine transformationsΦ

.
= (ϕi)1≤i≤N and at the same time,

the continuous 3-D imagef whose cross-sectionf ◦ ϕi at positionϕi is close to the observed
imageIi.

As mentioned in Introduction, the difficultly here is that two problems which are well
known and have already been intensively explored are compounded. If the affine parameters
Φ were fixed, the reconstruction off would be an interpolation/smoothing problem from
irregular data (see [18] and the references therein). On theother hand, if the true volumef was
known, to find the true position of each slice would be a rigid registration problem as solved
in [5]. We propose a statistic model for both volume reconstruction and slice positioning; this
yields a variational approach based on a posterior joint probability density ofΦ andf .
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2.2. Statistical modeling

We assume that the movement of the object corresponds to a random perturbation around
a mean movementΦ0. We suppose also thatΦ0 is given or can be estimated as it is the
case in micro-rotation microscopy. Now, given the data set{Ii}, the task is to estimate the
transformationsΦ more accurately in such a way thatf ◦ Φ ≈ I, and at the same time to
reconstruct the volumef . Classically, this problem can be formalized in the framework of
”inverse problems” [19]. The basic idea is to define an a-priori model for the pair(f, Φ) and
to estimate(f, Φ) by Bayesian inference. Here this consists of choosing the solution (f̂ , Φ̂)

that maximizes the a-posteriori probability (MAP criterion):

(f̂ , Φ̂) = argmaxf,ΦP (f, Φ|I)

= argmaxf,Φ

P (I|f, Φ)P (f)P (Φ)

P (I)
. (1)

We now provide general expression ofP (I|f, Φ), P (f) andP (Φ).
• First, the imageIi is seen as a noisy version off ◦ ϕi, with some additive noise:

Ii(x) = f ◦ ϕi(x) + ǫi(x) , ∀x ∈ H0 . (2)

We assume that differences{ǫi(x) x ∈ H0} are independently and identically distributed
according to the Gaussian lawN (0, σ2

ǫ ), and consequently the probability distribution ofIi

given(f, ϕi) is

P (Ii|f, ϕi) ∝ exp(−
∑

x

|Ii(x) − f(ϕi(x))|2/σ2
ǫ ) . (3)

Furthermore, we assume that slices{Ii} are conditionally independent given(f, ϕ) which
implies

P (I|f, Φ) =
N
∏

i=1

P (Ii|f, ϕi) .

• Second, we have to define a prior onf . In our context, this definition is crucial since the
role of the prior is to insure smooth reconstruction by interpolating sparse and non organized
points and also by this way to quantify the regularity of the volume. For non organized points
smoothing, a well know approach is the ”kriging” technique [20, 21] which can be efficiently
rewritten using a Reproducing Kernel Hilbert SpaceH (RKHS) formulation [22] (see [23]
for the tomography domain). This is quite technical. Briefly, f is represented by a linear
combination ofNc elementsk(xi, ·)1≤i≤Nc

in H :

f(·) =
∑

1≤i≤Nc

αik(xi, ·) , (4)

wherek(·, ·) is a kernel function modeling the spatial dependency withinf :

k(x, y) = ρ(‖(x − y)‖/λf) . (5)

With this definition, the unknown continuous volumef is replaced by the unknown set of
parameters(αi). As in the case of kriging, we have chosen the Gaussian function forρ. λf is
a scale parameter which defines the range of the spatial dependency, as a covariance function
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does.The control points(xi) in (4) are chosen at 3D regularly spaced grid locations covering
the region in which the volume reconstruction has to be done.The grid resolution is defined
by Nc and is equivalent to the image resolution.With this definition and the reproducing
property ofH, that is〈k(xi, .), k(xj , .)〉H = k(xi, xj), the norm off is

‖f‖2
H =

∑

i,j

αiαjk(xi, xj) .

Finally we define the Gaussian prior onf by

P (f) ∝ exp(−
‖f‖2

H

2σ2
f

) , (6)

whereσ2
f is a regularization parameter which tunes the amplitude of the variations off .

Greater is the probability, and greater is the regularity off with respect to the kernelk.
In summary, the role of this model is to quantify the regularity of the volume through

Gaussian structure, and also to treat the interpolation/smoothing task, a difficult task since here
the data are badly distributed : in the case of object in rotation, many data points are present
around the rotation center whereas far from this center, data points are very sparse.Let us note
that the simpleL2 norm‖f‖ as in [24], would not be suitable. In short, (1) leads to minimize
in f (when theφi’s are fixed) the energyE(f)

.
=
∑N

i=1

∑

x∈H0
|Ii(x) − f ◦ ϕi(x)|2 + γ‖f‖2

whereγ = σ2
ǫ /σ

2
f . Since there is no data between slices, the minimizerf̂ of this function

tends to be abnormally small at these locations. Note more importantly that the energyE is
actually not defined on theL2 space since data term is depending only on the values onf on
a negligeable set for the 3D Lebesgue measure . Of course, a non degenerated solution could
be obtained if we restrict the optimization to a finite dimensional subpace ofL2 as given by
the parametric formulation of (4). However, the dimensionality Nc of this subpace will then
be a regularization parameter to be estimated in addition tothe scaleλf . In constrast, the
natural RKHS norm associated with the kernelk is stable for increasingNc values provided
that the sampling is fine enough with respect to the scaleλf . Morever, the use of the RKHS
norm is mandatory to make the proper link with the statistical framework we are developing
hereafter for the estimation of parameters.

In this way, many papers have demonstrated the necessity to introduce prior spatial
dependency in tomographic reconstruction ([25, 26] among many others).

• Third, for the prior P (Φ), we assume that theϕi’s are independent isotropic
perturbations of the mean positionsϕ0

i , that is:

P (Φ)
.
= PΦ0(Φ) =

N
∏

i=1

Pϕ0

i
(ϕi) .

Models based on more sophisticated assumption could be designed but we have found that
this simple independence assumption allows in our case accurate volume reconstruction. Each
affine transformationsϕi is composed of a rotationRi and a translationbi, which codes theith

slice position with respect to the frameH0. The chosen model is

Pϕ0

i
(ϕi) ∝ exp(−d2(ϕi, ϕ

0
i )) ,
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where

d2(ϕi, ϕ
0
i ) =

d2(Ri, R
0
i )

σ2
ω

+
d2(bi, b

0
i )

σ2
b

, (7)

andσ2
ω andσ2

b are variance parameters which express how far the affine transformationφ

is allowed to deviate from the mean positionφ0. The distance between two rotations is the
common geodesic distance which is invariant to right/left rotation multiplication:

d(R, R′) = cos−1

(

trace(R(R′)−1) − 1 m=3

2

)

,

wherem refers to the dimension of rotation matrix (2 or 3). Finally,the distance between two
translations is the common Euclidean distanced2(b, b′) = ‖b − b′‖2

Rm.

3. Variational formulation

Given the priori and noise models as defined above, the MAP criterion (1) can be expressed
as a variational problem for which the solution(f̂ , Φ̂) minimizes the energy

J (Φ, f) =
1

2

N
∑

i=1

d2(ϕi, ϕ
0
i ) +

1

2σ2
f

‖f‖2
H

+
1

2

N
∑

i=1

∑

x∈H0

|f(ϕi(x)) − Ii(x)|2/σ2
ǫ . (8)

To minimizeJ , we use a gradient-descent based method defined as
(

Φ(t + δt)

f(t + δt)

)

=

(

Φ(t)

f(t)

)

−

(

▽Φ(t)J

▽f(t)J

)

δt . (9)

We therefore need to express the two partial gradients:▽ΦJ and▽fJ .

3.1. Expression for▽fJ

Due to (4), the calculation of▽fJ can be reduced to a finite dimensional computation.
Everything can be expressed in terms ofα

.
= (αi)1≤i≤NC

and the gradient is computed with
respect toα, §. We then have

▽αJ = σ−2
f Kα + AT (Aα − I)/σ2

ǫ , (10)

where
K

.
= (k(xi, xj))1≤i,j≤NC

A
.
= (k(ϕi(s), xj))1≤i≤N,s∈H0,1≤j≤NC

I
.
= (Ii(s))1≤i≤N,s∈H0

.

§ It is proved in [17] that if thexi are given as the current positions in space of all the slice pixels, then the
optimal solution inf , Φ fixed, can be expressed as (4)
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3.2. Expression for▽ΦJ

The partial gradient▽ΦJ is further decomposed into two terms: one for the rotations denoted
by ▽RJ (in fact a family(▽Ri

J )1≤i≤N ) and another for the translations denoted by▽bJ

(also a family). It is straightforward to write▽bJ directly from (8) since it involves only
functions based on common Euclidean scalar products. One reads

▽bi
J =

bi − b0

σ2
b

+
∑

x∈H0

(f(ϕi(x)) − Ii(x))

σ2
ǫ

▽ f(ϕi(x)) . (11)

To deduce the partial gradient with respect a rotationRi, keep in mind that we are
computing a derivative on a Lie group and not a vector space. In 2-D, the representation
of rotations by their angle allows for a simple derivation. Amore sophisticated derivation in
the 3-D case is detailed in the following proposition whose proof is given in Appendix.

Proposition : If R → F (R) is a smooth valued function defined on3 × 3 matrices
and ∂F

∂R
= ( ∂F

∂Rij
)1≤i,j≤3 is the matrix of partial derivatives ofF , then its gradient relative to

variationwithin the group of rotationsSO(3) is

▽RF = ▽ω
RF ∧ R (12)

where▽ω
RF

.
= 1

2

∑3
j=1 R.j ∧ (∂F

∂R
).j (operator().j extracts the matrix’sjth column.)

3.3. Optimization procedure

The gradient-descent algorithm (9) alternates between gradient steps onΦ parameters and on
α parameters (i.e., the volumef ). For a generic slicei, if we omit the indexi for sake of
simplicity, following (9) and (12), the current rotation matrix valueR(t) at timet is updated
by

R(t + δt) = R(t) − (▽ω
RJ ∧ R(t)) δt . (13)

Because of the presence ofδt, we have used the matrix exponential form [27] in order to
guarantee that the updatedR(t + δt) stays in the rotation group without having to make re-
orthogonalisation from time to time:

R(t + δt) = exp(−[δt ▽ω
R J ]×) R(t) , (14)

where[a]× denotes the skew-symmetric matrix associated to(a ∧ .). In fact, this formula
is a first order Taylor’s approximation of (13) obtained fromthe expansion of the matrix
exponential :exp(M) ≈ I + M (I is the identity matrix).

Since the energy termJ w.r.t α is a quadratic term, then from (10) updatingα is
straightforward. FixingΦ atΦ(t) and thusA to A(t), it has an analytical solution:

α(t) = (σ−2
f σ2

ǫ K + AT A)−1AT I . (15)

The positive definite kernel functionk(·, ·) guarantees the uniqueness of the solutionα(t). To
overcome the numerical bottleneck in 3-D due to the large value ofNC and the non compact
support of Gaussian kernel family, we have implemented a modified Fast Gauss Transform
(FGT) algorithm [28] and integrated it in the conjugate gradient method to solve the linear
system in (15).
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Moreover, updatingΦ(t) involved in (11) and (14) benefits also from the FGT
implementation thanks to the close form of▽Φ(t)J . To speed up the convergence rate
of estimating the nonlinear parametersΦ(t), Levenberg-Marquardt (LM) algorithm [29] is
adopted to determine explicitly the stepδt. The mixture optimization procedure combining
conjugate gradient method and LM algorithm guarantees still its convergence, at least to a
local critical point. With this coordinate-wise procedure the energy term is decreasing at
every step except at the end, near the solution, when the gradient becomes too small to be
numerically approximated with accuracy. At this point, theprocess is stopped without loss of
accuracy.

Our current implementation on a standard personal computer(3.6 GHz cpu, 4GB
memory and Matlab on Linux environment‖) requires about one hour per iteration of the
optimization procedure (8) for a volume of size503 from a sequence of130 images of size
50 × 50. Fig. 3 plots the energy curve for 20 iterations. One see thatafter only 5 iterations
the energy level reaches a stable value close to its final convergence value.

2 4 6 8 10 12 14 16 18 20
1

2

3

4

5

6

7

x 10
4

Figure 3. Energy curve for the reconstruction of a volume of size503.

4. Parameter calibration

One recurrent hurdle in energy based optimization methods is the proper choice of parameters.
The variance parametersσ2

b andσ2
ω on the initial guesses (see (7)) can be fixed frompriori

knowledge on their uncertainty. More difficult and crucial is the calibration of the other
parameters such as the hyper-parametersσ2

ǫ , σ2
f , (see (3) and (6)), which are essential to

achieve correct slice positioning and good reconstruction.
We take advantage of our modeling framework to derive a Bayesian estimate of the

unknown parameters. In this framework, the priori information is mainly given by the kernel
model (5). Indeed, it is well known that this kernel induces acovariance structure onf [22].
For our application, the central point is that, thanks to therotation and translation invariance

‖ There exists other solutions such as MPI or GPU parallel computation to acceleration of optimization, but
they are beyond of the research scope of this paper.
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of this covariance structure, for any positioningϕi of slicei, the vector representation of the
sliceFi

.
= {f(ϕi(xs))}s∈H0

is a Gaussian vector with covariance matrixindependentof ϕi:

cov(Fi(s), Fi(t)) = σ2
fρ(‖ϕi(xs) − ϕi(xt)‖/λf)

= σ2
fρ(‖xs − xt‖/λf) .

Furthermore, we assume that its meanµf is constant. Thus under the model assumptions (2),
the observed imageIi = Fi + ǫi is a Gaussian vectorN (µf1H0

, Γθ) where the covariance
matrixΓθ is explicitly given by

Γθ(s, t) = σ2
fρ(‖xs − xt‖/λf) + σ2

ǫ1s=t ,

where the unknown parameters are now denoted

θ = (µf , σ
2
f , λf , σ

2
ǫ ) .

This brings us to a more classical framework of non linear regression whereθ can be chosen
in order to optimise the log marginal likelihood ofIi,

log P (Ii|θ) = −
1

2σ2
ǫ

(Ii − µf1H0
)T Γ−1

θ (Ii − µf1H0
) −

1

2
log(|Γθ|) + Cte .

In fact, we use the whole sequence of images, using a conditional independence
approximation for theIi’s so that finally

θ̂ = argmaxθ

N
∑

i=1

log P (Ii|θ) (16)

By setting▽θ log P (Ii|θ) = 0, it yields:

µ̂f = (1T Γ−1
θ Ii)/(1T Γ−1

θ 1)

σ̂2
ǫ = 1

N
(Ii − µ̂f1)T (Γθ/σ

2
ǫ )

−1
(Ii − µ̂f1)

log P (Ii|θ) = −1
2
(N log σ2

ǫ +
∑N

i=1 log γi) + Cte .

where eigen-values(γi) come from the spectral decomposition ofΓθ [30] and Cte is a
constant. In such a way, there are only two independent parameters: scale factorλf and signal-
to-noise ratioσ2

f/σ
2
ǫ to be estimated numerically. In order to further reduce the complexity, we

split eachIi into a stack of sub-images{Ii,k} of smaller size and minimize
∑

i,k log P (Ii,k|θ).

5. Experimental Results

Fig.1 describes a simple experiment in two dimensions. Given the 1-D slice sequence whose
true positions are depicted in Fig.1(b), alignment and reconstruction have been computed
using the technique described above. For the initial position Φ(0) of the gradient-descent
based optimization procedure (9), we have assumed stable rotation and no translation. In
Fig.1(d), we see that after five iterations, the estimated positionsΦ(t) converge closely to
their ground-truth since the reconstructed object is closeto the true object whereas withΦ(0)

the reconstructed object is quite degraded (Fig.1(c)).
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4. 2-D reconstruction results with different level of noises.For each row, one reads the
noisy true image, the reconstructed image without positionestimation and the reconstructed
image with position estimation. 1D cross-section positions are those shown in Fig. 1(b). The
noise levels are : (a)σǫ = 0.2σf , (d)σǫ = 0.4σf , (g) σǫ = 0.75σf .

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0.5

1

1.5

2

2.5

3

σε/σf

R
M

S
E

 

 

position error with estimation

position error without estimation

Figure 5. Empirical curve of the position error and its associated error interval (drawn as 4
times the standard deviation).
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Moreover, an experiment has been done to test the stability of the method with regard
to different noise-signal ratios :σǫ/σf = 0.2, 0.4, 0.75. On Fig. 4, we see that the quality
of the reconstruction is better after alignment than before. However this improvement is
reduced when the noise-signal ration becomes too large. In the extreme case the positions
are blurred by the noise and are no more perceptible. The noise effect has been analyzed
by Monte Carlo computation. For every fixed noise-signal ratio, a sample of 20 different
independant realizations of the i.i.d. additive noise are considered. Our procedure was then
run on this data set and from the results, the empirical mean of the position error and its
standard deviation was computed (see Fig. 5). Since in this simulation test, both the true
positions and the initial positions of 1-D slice sequence are fixed, the position error without
estimation represented in the dashed line is constant and its value is 2.16 in our case. The
RMSE is reduced by a factor 2 for moderate SNR, i.e.,σǫ

σf
≤ 0.2. Another important remark

is that during all the simulation test experiments, the parameters are auto-calibrated exactly
by the method described in section 4.

We describe now a complex experiment in micro-rotation fluorescence microscopy. The
real data shown in Fig. 2 (sampling from one tour of 340 slices) was acquired from a living
cell cage and suspended in aCytoconTM chip (Evotec Technologies, Germany) to investigate
the localization and dynamics of nuclear lamina and green fluorescent protein (GFP).¶

Before launching the reconstruction-alignment coupling processing, the parametersθ
needed for the variational formula are estimated by the method proposed in section IV, on 100
blocks of30 × 30 uniformly distributed in all 340 slices (the size of each slice is156 × 156).
The parameters are estimated by MLE criterion asσ2

f = 9.75 × 106, σ2
ǫ = 3.36 × 105 and

λf = 3.5. The remaining two variance parameters coding the instability of the movement
away from the ideal trajectory are set asσ2

ω = 10.0 andσ2
b = 10.0. The initialization of the

ideal trajectory is determined from the hardware control. Once the cell is trapped inside the
dielectrophoretic field cage, the biologist adapts the fieldin order that the cell undergoes
a rotation movement around an ideal fixed axis : ideally an axis within the focal plane.
This axis is parameterized and we use it to determineΦ0. We have run the optimization
procedure determined by (9) for 5 iterations. Each iteration contains a subroutine of volume
reconstruction driven by conjugate gradient method with fixed 20 iterations and a subroutine
of slices alignment driven by Levenberg-Marquardt method with 20 − 200 iterations which
depends on the distance between the initial and final values of slices positions.

In order to have a fair validation of the reconstruction based on micro-rotation data, we
provide also a reconstruction based on the state-of-art z-stack imaging techniques. The z-stack
data have been acquired in suspension mode of theCytoconTM chip now controlled by a piezo
motor to displace the whole cage. With this mode, the slices are parallel and their z-positions
are known.+ Here, volume reconstruction is standard.The slice comparison between

¶ These confocal images were then collected using a ZeissAxiovertTM 200 confocal microscopy. For the
optical parameter setting, a 63x water immersion objectiveis used and numerical aperture (NA) is set to 1.2.
Finally, the resolution of each optical section image is 129nm and the chip driver gives us the mean rotation
direction projected in 2D optical section (it is y axis or vertical direction in this case study).
+ The step between two planes along z direction is set to 100nm and 181 slices were obtained for the same living
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conventional z-stack and micro-rotation imaging is done byextracting two orthonogal slice
pairs using ImageJ’s MedNuc OrtView plugin (see Fig. 6). Thez-stack was deconvolved
whereas the micro-rotation volume was not. In these coronaland sagital views, the nuclear
envelope contour from micro-rotation imaging is much better visualized than those from z-
stack imaging although micro-rotation volume is not deconvolved (see contours marked by
arrows). The small hole in the contour (marked by a rectangle) of the micro-rotation volume
is due to the so-called ”blind-cone” phenomena : when the rotation axis is not living in the
focal planeH0, the interior of the cone generated by the rotation axis is not sampled during
the micro-rotation process. In fact, it can be removed by deconvolution of the reconstructed
volume, [?] [ ?]. The micro-rotation volume is rendered in the same viewing direction as
that the z-stack data (its size is109 × 109 × 181) which is shown in Fig.7. The positions
of each slice coded by rigid transformation parameters are shown in Fig.9, which represents
an irregular perturbation in agreement with physical models. This irregular perturbation is
apparent on Fig.2, in particular from instant (j) to (k) (upward jump). Note that this jump is
well detected on the position parameters in Fig.9.

A deeper biological evaluation is beyond the scope of this paper [?]. However, to explain
the difference between the two reconstructed volumes, let us give two mains drawbacks of the
z-stack mode. First, contrary to the micro-rotation mode, it does not deal with the problem of
anisotropy of the microscope resolution: the resolution perpendicular to the focal plane is half
of the resolution within the focal plane [31]. Second, it suffers from geometrical distortions
: a spherical object does not appear spherical. It is clear from the rendering volume viewing
shown in Fig.7 that the reconstruction quality from micro-rotation slices is better than those
from deconvoluted z-stack slices: not only it gives the cellular membrane which is missing
in the z-stack volume, but also the geometrical distorsion caused by spherical aberration has
been reduced.

(a) (b) (c) (d)

Figure 6. Slice comparison between deconvolved z-stack and micro-rotation imaging. (a)-
(b) Two orthonogal slices from z-stack deconvolved by SVI Huygens software. (c)-(d)
Corresponding orthonogal slices from micro-rotation volume (without deconvolution).

cell as that used in micro-rotation mode.
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(a) (b)

Figure 7. 3D volume rendering using OsiriX software projected on a same viewing position.
(a) From conventional deconvoluted Z stacks. (b) From the micro-rotation volume.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 8. Slice comparison. Firt column : original slicesIi. Second column : slices
interpolated from the reconstruction volume at the estimated positionφ̂i. Third column :
slices interpolated from the deconvolved z-stacks at position φ̂i.
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Figure 9. Rigid transformation estimation of the 340 micro-rotationslices position
parameters: (a) translation of each slice (b) trajectory generated from the 340 rotation matrices
given by each slice position acting on a unit vector[1 0 0]t.

6. Conclusion

In this paper we have demonstrated that it is possible to perform simultaneously alignment
and reconstruction. Of crucial importance is the ability toperform parameter calibration
in a statistical framework, as well as the explicit modelingof all aspects of uncertainty. It
should be emphasized that even with low resolution, the slice positioning parameters can be
accurately estimated. The current reconstruction resultscould be easily improved by a second
reconstruction step at high resolution with the slice positions frozen at their estimated values.
However, a more principle route to deal with the computational burden of high-resolution is
to adopt the multi-resolution strategy. In our case, it consists of representing the volume by
a combination of kernels at different scale spaces. Moreover it should be able to avoid local
minima during the optimization phase.

7. Appendix

Proof
Lets us start with the derivate of the regular functionF (R) defined on the space of3× 3

matricesM3(R). LookingR as a function of the time, the derivate at timet0 is :

d

dt
F (R(t))|t0 = 〈

∂F

∂R
(R0), Ṙ0〉R3×3 , (17)

where Ṙ0 =
d

dt
R(t)|t0 .

In fact, we have to express this derivative on SO(3) and not simply onM3(R).
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The derivativeṘ of R(t) onSO(3) is well known ([27]). We recall it. By definition, any
rotationR satisfiesRT R = I. The derivative of this equation yieldṡRRT = −(ṘRT )T . It
follows thatΩ = ṘRT is a skew symmetric matrix. Such a matrix can be expressed trough a
vectorω ∈ R

3 : Ω = [ω] with [ω]x = ω ∧ x, ∧ denoting the cross product. FroṁRRT = [ω],
we get the result :

Ṙ = [ω]R . (18)

At this level, a fundamental remark must be done. Around the identity R(t) = I, the first
order approximation

R(t + dt) ≈ R(t) + [ω]Rdt

is simplyR ≈ I + [ωdt]. So, vector space so(3)={[ω], ω ∈ R
3} is called the tangent space

at the identity to SO(3). IfR(t) is not the identity, the tangent space is so(3) transported by
R, that is :TR(SO(3)) = {[ω]R, ω ∈ R

3}.

Let us come to the gradient ofF within SO(3). Now, we know thaṫR as defined in (18)
belongs toTR(SO(3)). With this constraint, the scalar product in (17) can be written

〈
∂F

∂R
, Ṙ〉R3×3 = 〈P

∂F

∂R
, Ṙ〉R3×3 , (19)

whereP is the projection onTR(SO(3)). Denote▽RF = P ∂F
∂R

. Since▽RF belongs to
TR(SO(3)), it exists a vector̂ω ∈ R

3 such that

▽RF = [ω̂]R . (20)

It implies the following development of the right side of (19) :

〈▽RF, Ṙ〉R3×3 = 〈[ω̂]R, [ω]R〉R3×3

= 2〈ω̂, ω〉R3 . (21)

On other hand, using the property〈a, b ∧ c〉 = 〈c ∧ a, b〉, the left side of (19) becomes

〈
∂F

∂R
, [ω]R〉R3×3 =

3
∑

j=1

〈

(

∂F

∂R

)

.j

, ω ∧ R.j〉R3

= 〈
3
∑

j=1

R.j ∧

(

∂F

∂R

)

.j

, ω〉R3 . (22)

Thus, identifying (21) and (22) , we find

ω̂ =
1

2

3
∑

j=1

R.j ∧

(

∂F

∂R

)

.j

,

and recalling 20 we get the final result▽RF = ω̂ ∧ R.
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