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Abstract. In [1], a new coherent statistical framework for estimating
statistical deformable template relevant to computational anatomy (CA)
as been proposed. It addresses the problem of population average and es-
timation of the underlying geometrical variability as a MAP computation
problem for which deterministic and stochastic approximation scheme
have been proposed. We illustrate some of the numerical issues with
handwritten digit and 2D medical images and apply the estimated mod-
els to classification through maximum likelihood.

1 Introduction

For the last decade, we are witnessing impressive achievements and the emer-
gence of elaborated registration theories [2–4] but the definition of a proper sta-
tistical framework for designing and inferring stochastic deformable templates in
a principle way is much less mature. Despite a seminal contribution [5] and the
fact that deformable templates can be cast into the general Grenander’s Pattern
Theory [6], the down-to-earth and fundamental problem of computing popula-

tion average in presence of unobserved warping variables has not received so
much attention from a more mathematical statistics perspective. More statisti-
cally oriented methods are slowly emerging [7–9] based on penalised likelihood or
equivalently MDL approaches. Another line of research is to deal with the prob-
lem of population average as an estimation issue of proper stochastic (ie genera-
tive) models for which consistency issues should be addressed. In this direction,
nonlinear mixed effects models (NLMM) are common tools in biostatistics and
pharmakocinetic [10] to deals with both modelisation and inference of common
population factors (fixed effects) and distributions of unobserved individuals fac-
tors (random effects). An active realm of research has emerged in the 90’s for
designing efficient and consistent estimation algorithms. The importation of such
ideas even in the limited context of population average of grey level images in
CA is extremely appealing and challenging –both theoretically and practically–
because of the very large (virtually infinite) dimensionality of the related factors
(common template and individual warpings). This new avenues have started to
be explored and theoretically consistent procedures based on recent advances on
stochastic approximation algorithms have been proposed in a series of papers [1,
11, 12]. Since these papers are mainly mathematically focussed papers, we would



like in the present paper to address some of the numerical issues of the vari-
ous “EM-like” algorithms proposed to numerically approximate the Maximum
A Posteriori estimator. Some relevant results on the USPS database and 2D
medical images are presented, showing the strength of such methods.

The paper is organised as follow. Sections 2, 3 and 4 respectively recall the
mixture model and how the estimation is completed and the particular case of
the one component. The last section, Section 5, is devoted to the experiments.

2 The observation model: BME-Templates

Consider a population of n gray level images (yi(s))s∈Λ defined on a discrete grid
of pixels Λ and assume that each observation y derives from a noisy sampling at
the pixels locations (xs)s∈Λ of an unobserved deformation field z : R

2 → R
2 of

a common continuously defined template I0 : R
2 → R

2. This is what we call the
Bayesian Mixed Effect Templates (BME-Templates). To keep things simple, we
work within the small deformation framework [5] and assume that y(s) = I0(xs−
z(xs))+σǫ(s) = zI0(s)+σǫ(s) ,where ǫ is a Gaussian normalised white noise and
σ2 is the common noise variance. The template I0 and the deformation z are
restricted to belong to subspaces of reproducing kernel Hilbert spaces Vp (resp
Vg) with kernelKp (respKg). Given (pk)1≤k≤kp

a fixed set of landmarks covering
the image domain, the template function I0 is parametrised by coefficients α ∈
R

kp through: Iα = Kpα, where (Kpα)(x) =
∑kp

k=1Kp(x, pk)α(k) . Similarly
we write zβ = Kgβ with another set of landmarks (gk)1≤k≤kg

and a vector
β ∈ R

2kg of coefficients. In order to detect a global geometrical behaviour, we
consider the parameters β of the deformation field as an unobserved variable
which is supposed to be Gaussian centred with covariance matrix Γg.

We present a general model based on NLMM defining a Bayesian mix-
ture of m deformable template models (hereafter called components). The
model parameters of each component t ∈ {1, . . . ,m} are denoted by θt =
(αt, σ

2
t , Γ

t
g). We assume that θ belongs to the open parameter space Θ

.
= { θ =

(αt, σ
2
t , Γ

t
g)1≤t≤m| ∀t ∈ {1, . . . ,m} , αt ∈ R

kp , σ2
t > 0, Γ t

g ∈ Σ+
2kg,∗(R) } and

For each component t (fixed effects) :

– ρt : probability of the component
– αt : associated template parameter
– Γ t

g : associated covariance matrix for
deformation parameters

– σ2
t : associated additive noise variance

For each observation yi (random effects) :

– τi : associated component
– βi : deformation parameters
– ǫi : additive noise

y1

yn

Population
factors
(fixed effects)

τ1,β1,ε1

Hyperparameters

Individual
factors
(random effects)

τn,βn,εn

(ρ,α,Γ,σ 2)
m

(ρ,α,Γ,σ 2)
1

......

  

τι ,βι ,ει yi

Unobserved variables

...
...

...
...

Fig. 1. Mixed effect structure for our BME-template



ρ = (ρt)1≤t≤m to the open simplex ̺. Here Σ+
2kg,∗(R) is the set of strictly positive

symmetric matrices. Let η = (θ, ρ), the precise hierarchical Bayesian structure
of our model is :
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where the hyper-parameters are fixed. All priors are the natural conjugate priors
and assumed independent. A natural choice for the a priori covariance matrices
Σp and Σg is to consider the matrices induced by the metric of the spaces Vp

and Vg. Define the square matrices Mp(k, k
′) = Kp(pk, pk′) ∀1 ≤ k, k′ ≤ kp and

Mg(k, k
′) = Kg(gk, gk′) ∀1 ≤ k, k′ ≤ kg, and then set Σp = M−1

p andΣg = M−1
g ,

which are typical prior matrices used in many matching algorithms.

3 Estimation of the parameters

The parameter estimates are obtained by maximising the posterior density on η
conditional on yn

1 : η̂n = argmaxη q(η|yn
1 ). Since the deformation coefficients βn

1

and component labels τn
1 are unobserved, the natural approach is to use iterative

algorithms such as EM [13] to maximise the posterior given the observations yn
1 .

In the present context, we initialise the algorithm with the prior model η0.

3.1 Fast approximation with modes (FAM)

The expressions in the M step require the computation of expectations with
respect to the posterior distribution of βn

1 , τ
n
1 |yn

1 which is know up to the re-
normalisation constant. To overcome this obstacle, given an observation yi and
a label t, the posterior distribution of the random deformation field is approxi-
mated at iteration l by a Dirac law on its mode β∗

l,i,t. This yields the following

computation : β∗
l,i,t = argmax

β
log q(β|αt,l, σ

2
t,l, Γ

t
g,l, yi) = arg minβ

{

1
2β

t(Γ t
g,l)

−1β + 1
2σ2

l,t

|yi −Kβ
pαt,l|2

}

,

which is a standard template matching problem with the current parameters.
We then approximate the joint posterior on (βi, τi) as a discrete distribution
concentrated at the m points (β∗

l,i,t)1≤t≤m with weights given by: wl,i(t) ∝
q(yi|β∗

l,i,t, αt,l)q(β
∗
l,i,t|Γ t

g,l)ρt,l The label τl,i is then sampled from the distribution
∑m

t=1 wl,i(t)δt and the deformation is the mode of the drawn label βl,i = β∗
l,i,τi

.

3.2 Using a stochastic version of the EM algorithm : SAEM-MCMC

An alternative to the computation of the E-step in a complex nonlinear con-
text is to use the stochastic approximation EM algorithm (SAEM) [14] coupled
with an MCMC procedure [15] and a truncation on random boundaries. Our
model belongs to the exponential density family which means that: q(y, β, τ, η) =
exp [−ψ(η) + 〈S(β, τ), φ(η)〉] , where the sufficient statistic S is a Borel function
on R

2kg × {1, . . . ,m} taking its values in an open subset S of R
m and ψ, φ two

Borel functions on Θ×̺ (the dependence on y is omitted for sake of simplicity).



We introduce the following function: L : S×Θ×̺→ R as L(s; η) = −ψ(η)+
〈s, φ(η)〉 . It has been proved in [1] that there exists a critical function η̂ : S →
Θ × ̺ which satisfies: ∀η ∈ Θ × ̺, ∀s ∈ S, L(s; η̂(s)) ≥ L(s; η). Then, each
iteration of this algorithm consists of the following four steps.

Simulation step: The missing data are drawn using a transition probability
of a convergent Markov chain having the posterior distribution as stationary
distribution: (βl+1, τl+1) ∼ Πηl

((βl, τl), ·)
Stochastic approximation step: Since the model is exponential, the stochas-

tic approximation is done on the sufficient statistics using the simulated values of
the missing data: sl+1 = sl +∆l+1(S(βl+1, τl+1)−sl) ,where (∆l)l is a decreasing
sequence of positive step-sizes.

Truncation step: A truncation is done on the stochastic approximation.

Maximisation step: The parameters are updated: ηl+1 = η̂(sl+1).

Concerning the choice of Πη used in the simulation step, as we aim to
simulate (βi, τi) through a transition kernel which stationary distribution is
q(β, τ |yi, η), we simulate τi with a kernel whose stationary distribution is q(τ |yi, η)
and then βi through a transition kernel that has q(β|τ, yi, η) as stationary distri-
bution. Given any initial deformation field ξ0 ∈ R

2kg , we run, for each component
t, Jl iterations of a hybrid Gibbs sampler Πη,t using the conditional prior distri-
bution βj |β−j as the proposal for the jth coordinate, β−j referring to β without

its jth coordinate. So that we get Jl elements ξt,i = (ξ
(k)
t,i )1≤k≤Jl

of an ergodic
homogeneous Markov chain which stationary distribution is q(·|yi, t, η). Denot-
ing ξi = (ξt,i)1≤t≤m, we simulate τi through the discrete density with weights

given by: q̂ξi
(t|yi, η) ∝

 

1
Jl

Jl
P

k=1

»

ft(ξ
(k)
t,i

)

q(yi,ξ
(k)
t,i

,t|η)

–

!−1

,where ft(ξ) is the density of the

Gaussian distribution N (0, Γg,t). Then, we update βi by re-running Jl times the
hybrid Gibbs sampler Πη,τi

starting from a random initial point β0. It has been
proved in [12], that the sequence (ηl)l generated through this algorithm converges
a.s. toward a critical point of the penalised likelihood of the observations.

4 Single component model

We focus here on the single component model (m = 1). The unobserved vari-
ables are only the deformation fields β and the parameters are reduced to θ =
(α, σ2, Γg). In this particular setting, denoting by P the distribution governing
the observations and byΘ∗ = { θ∗ ∈ Θ |EP (log q(y|θ∗)) = supθ∈Θ EP (log q(y|θ))},
it has been proved in [1] that the MAP estimator θ̂n exists a.s. and converges
toward an element in Θ∗. From the algorithmical viewpoint, the FAM algo-
rithm does not require any changes. Indeed, each E step only corresponds to
a single computation of the mode of the posterior density. Fortunately, the
stochastic algorithm can be simplified. In the simulation step, only a single
iteration of the Markov chain is needed for each iteration of the SAEM algo-
rithm: βl+1 ∼ Πθl

(βl, ·) yielding a non homogeneous Markov chain. It has been
proved in [11], that the sequence (θl)l generated converges almost surely toward
a critical point of the penalised likelihood of the observations.



5 Experiments

5.1 Estimation results

We illustrate this theoretical framework with the USPS handwritten digit database
which corresponds to non noisy gray level images. In addition, we compare the
two algorithmical approaches on 2D medical images of a part of the corpus
calosum (the splenium) and part of the cerebellum.

Figure 2 shows the templates estimated from a training set (Figure 2-(a)) of
20 or 40 images per digit with both algorithms for the models with one and two
components per class respectively. The results are quite similar, in particular the
two components present the same features for both algorithms. Topologically
different shapes are separated (cf digits 7 and 2) and the other digit clusters
are relevant. While estimating a single component, the templates are a good
representant of the shapes existing in the training set.

Concerning the geometrical variability, Figure 3, left image, presents some
synthetic examples drawn with respect to the model with the estimated param-
eters. In spite of some artefacts described below, the kind of deformations learnt
applied to the estimated templates looks like the elements of the training set.

Last but not least, one could wonder how those algorithms deal with noisy
images. In [1], this particular case has been shown to fail with the FAM algo-
rithm with a toy example. Whereas, in [11, 12], the authors have proved the
theoretical convergence of the two stochastic algorithms (for the mixture and
simple models). This supports the fact that the estimated parameters should be
less sensitive to the noise that can appear in the data. This is what we show in
Figure 4 for a database of 20 images per digit which is partly presented. The re-
sults are related to the theory. Indeed, the FAM algorithm is stuck in some local
maximum of the likelihood whereas the stochastic algorithm reaches a better es-
timator for the parameters. This illustrate the power of the stochastic approach
to solve this problem. Both the template and the geometrical distribution are
well estimated. The results are presented in Figure 4 and in the right image of
Figure 3 where we can notice that the noise is separated from the estimation of
the photometry and the geometry variability.

(a) (b) (c) (d)

Fig. 2. (a) Some images of the USPS training set: 20 images per class. (b,c,d): Top
row : FAM Algorithm, Bottom row : SAEM-MCMC algorithm. (b): one component
prototype. (c-d): 2 component prototypes.



Fig. 3. 40 synthetic examples per class generated with the estimated parameters: 20
with the direct deformations and 20 with the inverse deformations. Left: from the
non-noisy database estimated parameters. Right: from the noisy database estimated
parameters. Note that the variability of digit is well reproduced, both in the case of
highly deformable digits (e.g. 2 and 4) or in more constrained situations (e.g. 7 and 1).

Fig. 4. Left: Two images per digit of the noisy database. Middle: Estimated prototypes
in a noisy setting σ2 = 1. Left : with the FAM algorithm. Right : with the SAEM-
MCMC coupling procedure.

The computational times of both algorithms for the simple model are very
similar. The gradient descent required to compute the mode at each iteration
last as long as one run of the Gibbs sampler used in the simulation step. For
the general model, the SAEM-MCMC algorithm is longer since it requires the
computation of many iterations of m Markov chains which can actually be easily
parallelised. In addition, the number Jl of iterations of the Markov chain can be
fixed all along the algorithm.

We also test the algorithms on some medical images. The database we con-
sider has 47 2D images, each of them representing the splenium (back of the
corpus calosum) and a part of the cerebellum.

The results of the estimation are presented in Figure 5 where we can see the
improvement from the gray level mean to our estimations. The second image,
corresponding to the deterministic algorithm result, shows a well contrasted
splenium whereas the cerebellum remains a little bit blurry (note that it is
still much better that the simple mean). The third image, corresponding to the



(a) (b) (c) (d) (e)

Fig. 5. Top row : Ten images of the training set representing the splenium and a
part of the cerebellum. Bottom row : Results from the template estimation. (a,b,c) :
gray level mean image of the 47 images and templates estimated with the FAM and
the stochastic algorithms (respectively) on the simple model. (d,e) : two component
estimated templates.

stochastic EM algorithm result, presents some real improvement again. Indeed,
the splenium is still very contrasted, the background is not blurry and overall,
the cerebellum is well reconstructed with several branches. The two anatomical
shapes are relevant representants of the ones observed in the training set.

The estimation has been done while enabling the decomposition of the database
into two components. The two estimated templates are presented in Figure 5 (d)
and (e). The differences can be seen in particular on the shape of the splenium,
where the fornix is more or less close to the boundary of the image and the thick-
ness of the splenium varies. The number of branches in the two cerebella also
tends to be different from one image to the other (4 in the first component and
5 in the second one). The estimation suffers from the small number of images we
have. To be able to explain the huge variability of the two anatomical shapes,
more components would be interesting but at the same time more images so that
the components will not end up empty.

5.2 Optimisation on the representation, model and algorithms

Despite the fact that many parameters (e.g. the noise variance) are self-calibrated
during the estimation process, the algorithm depends on some hyper-parameters
we would like to discuss briefly.

Data representation Issues. The first point to be explain is the effect of
the representation of the data, in particular the spline representation of both the
template and the deformations (cf Section 2). We have chosen Gaussian kernels.
The influence of their two scales can be seen on the template estimation. Indeed,
choosing a too small geometric scale leads to very localised deformations around
fixed control points and the resulting template is more blurry. In Figure 6, we
present the results on a 20 handwritten digit images learning process. On the
opposite side, a very large scale induces very smooth deformations which would
no more be relevant for the kind of deformations required to explain the database.



Fig. 6. Estimated prototypes (20 images per digit), σg = 0.2 (Left), σg = 0.3 (Right)
with images in [−1, 1]2.

Concerning the photometric scale, it is straightforward that a large scale will
drive to blurry template. This is particularly noticeable on digit 1 where the
thickness significantly increases (cf Figure 7 two left images).

In addition, the effects of increasing scale can also be noticed on the learnt
covariance matrix. Given a fatty template, the deformations required to fit the
database will be forced to contract the template. This phenomena is thus impor-
tant in the learnt covariance matrix. When we generate new data thanks to the
estimated parameters, we can see, as in Figure 7 right images, that the template
is contracted, which is relevant, but also enlarged since the distribution on β is
symmetric (this particular point is detailed in the next paragraph). Those large
images are not typical from the training set.

Model distribution Issues. One question is the relevance of the Gaussian
distribution chosen for the deformation field. It is natural to think that the mean
of the deformations around an atlas is close to zero whereas the symmetry of
the distribution is much more arguable. The probability for a deformation field
+β equals its opposite one −β. In Figure 3, we show the effects of the action of
both fields on the learnt 10 digits templates. For example, digits 3 and 9 present
for some samples irregular images whereas the opposite deformation leads to an
image which is very similar to one or more element of the training set.

Another issue about the model is the choice of the prior hyper-parameters. In
particular, the effect of the inverse Wishart prior ag on the geometric covariance
matrix is important. Indeed, if we would like to satisfy the theoretical require-
ments to the algorithms, we have to chose ag ≥ 4kg + 1. however, the update
formula is a barycenter between the expectation of the empirical covariance ma-
trix and the prior with weights n and ag respectively [1]. Since we are working
with small sample sizes, this condition makes the update of Γg very constrained

Fig. 7. Two left images: Estimated prototypes of digit 1 (20 images per class) for dif-
ferent hyper-parameters. Left: smaller geometry and larger photometric scales. Right:
larger geometry and smaller photometric scales. Right images: Synthetic examples cor-
responding to the two previous templates of digit 1.



close to the prior Σg. This does not enable the geometry to be well estimated
and the effects can be seen directly on the template but also on the classification
rate [1].

Stochastic Algorithm Issues. The FAM algorithm is deterministic and
does not depend on any choice. Unfortunately, the stochastic algorithm requires
several choices to optimise.

To optimise the choice of the transition kernel Πη, we run the algorithm with
different kernels and compare the evolution of the simulated hidden variables as
well as the results on the estimated parameters. Some kernels, as an ordinary
Hastings Metropolis algorithm using as proposal the prior or a standard random
walk added to the current value, do not allow to visit well the entire support of
the unobserved variable. From this point of view the hybrid Gibbs sampler we
used has better properties and gives nice estimation results.

To prove the convergence of the stochastic algorithms, we have to suppose
that as soon as the stochastic approximation wanders outside an increasing com-
pact set, the unobserved variable needs to be projected inside a given compact
set (this is the truncation on random boundaries). In practice however, this step
is never required, the results presented were obtained without this control.

Finally, the initialisation of the parameters can lead to undesirable effects. For
example, if the first value of the photometric parameter α is set to 0, at the first
iteration of the Gibbs sampler, the proposal will be accepted with probability
one. Since the candidate coordinates are simulated according to the conditional
a priori, the resulting vector β leads to a variation which does not correspond
to a relevant digit deformation. This implies some oscillations on the updated
template. The next simulated deformation variable will try to take these oscilla-
tions into account to get closer and closer to the oscillating template, staying in
its orbit. The results can be observed in Figure 6 (Right) specially for digit 1.

5.3 Results on classification rates

To get an objective way of comparing our algorithms and showing the perfor-
mances, we use our model to propose a classifier which can easily be run on the
USPS testset. We use the same approximations for the classification process,
either a mode approximation of the posterior density or some MCMC methods
to approximate the expectation required to compute the best class. Running the
estimation with a FAM algorithm on all USPS database with 15 components and
using a “mode” classifier gives a classification error rate of 3.5%. This is com-
parable to other classifiers results. The importance of the coupled photometric
and geometric estimation is emphasised in [1].

Since the drawback of this method can be better proved in the presence of
noise, we add an independent Gaussian noise of variance 1 on both the training
set and the testset and run both estimations (with one component per class) and
both classifications. We run the parameters estimation though the “SAEM-like”
algorithm presented in the previous section. The classification error rate obtained
are 22.52% when the classification uses the mode approximation and 17.07%
using some MCMC methods. These results are a lot worse if the parameters are
estimated with the FAM process. For example, the classification error reaches
40.71% when the classification is also done via the mode approximation.



6 Conclusion

We have presented some applications of the coherent statistical framework with
BME-Template models described in [1, 11, 12]. This framework is fairly versatile
and could be derived in many other important situations in CA. The possibility
to work with mixture of deformable templates in a principled statistical way is
also a quite enjoyable and unique feature of this setting. Reported experiments
show that the deterministic FAM algorithm, despite its simplicity, performed
significantly worse especially under noisy conditions than more sophisticated
stochastic alternative. The introduction of such MCMC methods are still quite
challenging in the 3D setting or for large deformation ([16] for a “FAM like”
template estimation) but from an algorithmic point of view, there is a continuous
interpolation from deterministic to stochastic algorithms (just increasing the
number of MCMC steps) so that there is no sharp complexity gaps between
to two approaches. Increasingly available computational power will make such
stochastic approaches more and more appealing in the future.
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