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CMLA, Ecole Normale Supérieure de Cachan,

61 Avenue du President Wilson, F-94 235 Cachan CEDEX, France

trouve@cmla.ens-cachan.fr

Laurent Younes

Center For Imaging Science & Department of Applied Math and Statistics,

The Johns Hopkins University, 3245 Clark Hall, Baltimore, MD 21218, USA

laurent.younes@jhu.edu

December 11, 2007

Abstract

Templates play a fundamental role in Computational Anatomy. In
this paper, we present a Bayesian model for template estimation. It is
assumed that observed images I1, I2, ..., IN are generated by shooting
the template J through Gaussian distributed random initial momenta
θ1, θ2, ..., θN . The template J is modeled as a deformation from a given
hypertemplate J0 with initial momentum µ, which has a gaussian prior.
We apply a mode approximation of the EM (MAEM) procedure, where
the conditional expectation is replaced by the Dirac measure. This
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leads us to an image matching problem with a Jacobian weight term,
and we solve it by deriving the weighted Euler-Lagrange equation. The
results of template estimation for hippocampus and cardiac data are
presented.

Keywords: template estimation, computational anatomy, Bayesian,
weighted Euler-Lagrange equation

1 Introduction

Computational Anatomy (CA) is the mathematical study of variability of
anatomical and biological shapes. The framework has been pioneered by
Grenander [12] through the notion of deformable templates. Given a tem-
plate Itemp, the group of diffeomorphisms G acts on it to generate an orbit
I = G.Itemp, a whole family of new objects with similar structure as Itemp.
Hence, one can model elements in the orbit I via diffeomorphic transforma-
tions.

Templates play an important role in CA. They are usually used to gener-
ate digital anatomical atlases and act as a reference when computing shape
variability. Often, templates have been chosen to be manually selected “typ-
ical” observed images. It is however preferable to build a template based
on statistical properties of the observed population. There has been by now
several publications addressing the issue of shape averaging over a dataset.
In this context, the average is based on metric properties of the space of
shapes; assuming a distance in shape space is given, the average of a set
of shapes is a minimizer of the sum of square distances to each element of
the set (Fréchet or Karcher mean). When the shape space is modeled as
a Riemannian manifold, a local minimum of this sum of squared distances
must be such that the sum of initial velocities of the geodesics between the
average and each of the elements in the set vanishes. This leads to the fol-
lowing averaging procedure (sometimes called procrustean averaging) which
consists in (i)starting with an initial guess of the average, (ii) computing all
the geodesics between this current average and each element in the set of
shapes, (iii) averaging their initial velocities and (iv) displacing the current
average to the endpoint of the geodesic starting with the initial velocity,
this being iterated until convergence [13, 20, 10, 16, 21]. A different varia-
tional definition of the average has been provided in [8, 5, 4]. In the present
work, however, we do not build the template as a metric average, but as
the central component of a generative statistical model for the anatomy.
This is reminiscent of the construction developed in [1] for linear models of
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deformations, and in [11] for thin-plate models of points set.
In our application of Grenander’s pattern theory, anatomical shapes

are modeled as an orbit under the action of the group of diffeomorphisms.
Because of this, diffeomorphisms play an important role in our statistical
model. The nonlinear space of diffeomorphisms can be studied as an infi-
nite dimensional Riemannian manifold, on which, with a suitable choice of
metric, geodesic equations are described by a momentum conservation law
[2, 3, 15, 17]. In our context, the methodology of geodesic shooting [23, 19] re-
lies on this conservation law to derive statistical models on diffeomorphisms
and deformable objects. Through the geodesic equations, the flow at any
point along the geodesic is completely determined (once a template is fixed)
by the momentum at the origin. The initial momentum therefore provides
a linear representation of the nonlinear diffeomorphic shape space in a local
chart around the template, to which linear statistical analysis can be ap-
plied. Note that metric averaging can be reconnected to geodesic shooting
[23, 14]. In this case, the algorithm is: first, compute the geodesic from a
given template I0 to several target images and obtain the initial momenta
of each transformations; second, compute the mean initial momentum m̄;
then, shoot I0 with initial momentum m̄ to get a new image Ī; iterate this
procedure. This approach was used in landmark matching [23], 3D average
digital atlas construction [6] and quantifying variability in heart geometry
[14].

In this paper, we introduce a random statistical model on the initial
momentum to represent random deformations of a template. The generative
model we use combines this deformation with some observation noise. We
will then develop a strategy to estimate the template from observations,
based on the “Mode Approximation of the EM algorithm” (MAEM), under
a Bayesian framework.

The paper is organized as follows. We first provide some background
material and notation related to diffeomorphisms and their use in compu-
tational anatomy. We then discuss template estimation and detail the sta-
tistical model and the implementation of the MAEM procedure. This will
require in particular introducing an extension of the LDDMM algorithm
[7, 18] to the case where the data attachment term has a nonstationary spa-
tial weight. We finally provide experimental results, with a comparison with
a simplified, non-bayesian, approach.

3

张岩
高亮

张岩
高亮



1.1 Background

Let the background space Ω ⊂ R
d be a bounded domain on which the images

are defined. To a template Itemp corresponds the orbit I = {Itemp ◦g−1 : g ∈
G} under the group of diffeormorphisms G. For any two anatomical images
J, I ∈ I, there exists a set of diffeomorphisms (denote g as an arbitrary
element in the set) that registers the given images: I = J ◦ g−1. Following
[9, 22], when we define the orbit I, we restrict to diffeomorphisms that can
be generated as flows gt, t ∈ [0, 1] controlled by a velocity field vt, with the
relation

∂gt

∂t
(x) = vt(gt(x)), x ∈ Ω, t ∈ [0, 1] (1)

with initial condition g0 = id. To ensure that the ODEs generate dif-
feomorphisms, the vector fields are constrained to be sufficiently smooth
[9, 22]. More specifically, they are assumed to belong to (V, ‖ ·‖V ), a Hilbert
space with squared norm defined as ‖v‖V = (Av, v) through an operator
A : V 7→ V ∗, where V ∗ is the dual space of V . For v ∈ V , Av can be
considered as a linear form on V (a mapping from V to R) through the
identification (Av,w) = 〈v, w〉V , where (Av,w) is the standard notation for
a linear form Av applied to w. Interpreting ‖v‖2

V = (Av, v) as an energy,
Av will be called the momentum associated to the velocity v. We assume
that V can be embedded in a space of smooth functions, which makes it a
reproducing kernel Hilbert space with kernel K = A−1 : V ∗ 7→ V .

The geodesics in the group of diffeomorphisms are time-dependent dif-
feomorphisms t 7→ gt defined by (1) such that the integrated energy

∫ 1

0
‖vt‖

2
V dt (2)

is minimal with fixed boundary conditions g0 and g1. The image matching
problem between J and I is formalized as the search for the optimal geodesic
starting at g0 = id such that I = J ◦ g−1

1 . From this is derived the inexact
matching problem, which consists in finding a time-dependent vector field
vt solution of the problem

v̂ = argmin
v:ġt=vt(gt)

(
∫ 1

0
‖vt‖

2
V dt +

1

σ2
‖J ◦ g−1

1 − I‖2
2

)

. (3)

Geodesics are characterized by the following Euler equation (sometimes
called EPDiff [15]), which can be interpreted as a conservation equation for
the momentum Av [2, 3]. The equation is

∂Avt

∂t
+ (Dvt)

∗Avt + div(vt)Avt + D(Avt)vt = 0. (4)
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Based on this, Beg et al. [7] developed the LDDMM algorithm for image
matching. Solutions of LDDMM are geodesics connecting g0 = id and g1 for
the metric defined by (2) on groups of diffeomorphisms, hence they satisfy
the EPDiff equation [19].

The conservation of momentum is described as follows. Let w0 be a
vector field, and wt = Dgt(g

−1
t )w0(g

−1
t ) be the transported vector field along

the geodesic. Then, if Avt satisfies Eq. (4), we have:

∂

∂t
(Avt, wt) = 0. (5)

This implies Avt = (Dg−1
t )∗Av0(g

−1
t )|Dg−1

t |, t ∈ [0, 1], meaning that the
geodesic evolution in the orbit J ◦g−1

t depends only on J and the momentum
at time 0. The solution of (3) satisfies this property in an even simpler form,
which explicitly provides the momentum Avt in function of the deformed
images and the diffeomorphism gt [7, 18]. Moreover, Eq. (5) can be shown
to have singular solutions that propagate over time. In fluid mechanics,
EPDiff is used to model the propagation of waves on shallow water. In
our context, it provides a very simple form to finitely generate models of
deformation (see section 3.2).

Hence, the nonlinear diffeomorphic shapes can be represented by the
initial momenta which lie on a linear space (the dual of V ). This provides
a powerful vehicle for statistical analysis of shapes. In this paper, we in-
vestigate a statistical model of deformable template estimation using this
property.

2 Methodology of Template Estimation

2.1 Statistical model for the anatomy

In addition to the conservation of momentum discussed in the previous
section, solutions of (3) have also their energy conserved (since they are
geodesics): ‖vt‖

2
V is independent of time. Because of this, problem (3) is

equivalent to

v̂ = argmin
v:ġt=vt(gt)

(

‖v0‖
2
V +

1

σ2
‖J ◦ g−1

1 − I‖2
2

)

. (6)

where v0 is the initial velocity. So the minimization is now restricted to
time-dependent vector fields v that satisfy (4). The minimized expression
may formally be interpreted as a joint log-likelihood for the initial velocity
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v0 and observed image I in which v0 would be a random field (with V as
a reproducing space) generating, via (4), a diffeomorphism g1, and I would
be obtained from the deformed template by the addition of a white noise.

This is essentially the model we adopt in this paper, under a discrete
form that will be more amenable to rigorous computation. Recall that we
have defined the duality operator A on V as associating to v in V the linear
form Av ∈ V ∗ defined by (Av,w) = 〈v, w〉V . By the Riesz representation
theorem, A is invertible with inverse A−1 = K. The discretization will be
done on the momentum, m = Av, instead of the velocity field v.

Note that the sets V and V ∗ are isometric if V ∗ is equipped with the
product 〈m, m̃〉V ∗ = (m,Km̃) for m, m̃ ∈ V ∗. Therefore, the norm of initial
velocity is equal to the norm of corresponding initial momentum, that is,
for m0 = Av0, we have

(Av0, v0) = ‖v0‖
2
V = ‖m0‖

2
V ∗ = (m0,Km0). (7)

Formally again, this may be interpreted as the log-likelihood of a Gaus-
sian distribution on V ∗ with covariance operator A = K−1, characterized by
the property that, for any w ∈ V , (m0, w) is a centered Gaussian distribution
with variance

E{(m0, w)2} = (Aw,w) = ‖w‖2
V . (8)

We now discuss a discrete version of this random field. For x, a ∈ R
d,

denote a � δx the linear form w 7→ (a � δx, w) := aT w(x). Noting that
K(a� δx) ∈ V is, by definition, a vector field on V that depends linearly on
a, we make the abuse of notation

K(a � δx)(y) = K(y, x)a

where K(y, x) is a d by d matrix (the reproducing kernel of V ). It can be
checked that K(x, y) = K(y, x)T and

〈K(·, y)a,K(·, z)b〉V = aT K(y, z)b.

We model the random momentum θ as a sum of such measures

θ =

S
∑

i=1

ai � δxi
(9)

where x1, x2, ..., xS ∈ Ω form a set of fixed (deterministic) points (for ex-
ample, the grid supporting the image discretization) and a = (a1, a2, ..., aS)
are random variables such that a ∼ N (0,Σ) in R

Sd. We want to choose
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Σ consistently with our formal interpretation of Eq.(7). For this, we can
compute, for w ∈ V

(θ, w) =

S
∑

i=1

aT
i w(xi) (10)

which is a Gaussian with mean 0 and variance

S
∑

i,j=1

w(xi)
T Σijw(xj)

where Σij is the d by d matrix E(aia
T
j ). We want to compare this to

equation (8), and in particular ensure that both expressions coincide when
w = K(·, xk)b for some b ∈ R

d and k ∈ {1, . . . , S}. In this case, we have
‖w‖2

V = bT K(xk, xk)b yielding the constraint: for all k

K(xk, xk) =

S
∑

i,j=1

K(xk, xi)ΣijK(xj , xk).

Define K̃ij = K(xi, xj) and assume that the block matrix K̃ = (K̃ij) is
invertible. Then the equation above is equivalent to Σ = K̃−1, which com-
pletely describes the distribution of (a1, . . . , aS).

The probability density function (p.d.f) of a is given by

p(a) =
1

Z
e−

1
2
aT Σ−1a =

1

Z
e−

1
2
aT K̃a (11)

where Z = (2π)Sd/2/
√

detK̃.
It is interesting to notice that we have, with θ =

∑S
i=1 ai � δxi

,

(θ,Kθ) =

S
∑

i,j=1

(ai � δxi
,K(·, xj)aj) (12)

=
S

∑

i,j=1

aT
i K(xi, xj)aj

= aT K̃a. (13)

So the p.d.f of θ can be written as

p(θ) =
1

Z
e−

1
2
(θ,Kθ)1V ∗(x)(θ) (14)
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where 1 represents the indicator function and V ∗(x) = {θ =
∑S

i=1 ai �
δxi

, a1, . . . , aS ∈ R
d}. Since in the infinite dimensional space V ∗, our model

is a singular Gaussian distribution supported by the finite dimensional space
V ∗(x). When restricted on this space, it is continuous with respect to the
Lebesgue measure with a density provided by Eq. (14).

This describes the deformation part of the model, represented as the dis-
tribution of the initial momentum θ. We can solve (4) with initial condition
Av0 = θ from time t = 0 to t = 1 and integrate the velocity field t 7→ vt to
obtain a diffeomorphism, that we shall denote gθ, at time t = 1. Although
we will not use this fact in our numerical methods, it is important to notice
that gθ can be obtained from θ (given by Eq. (9)) via the solution of a sys-
tem of ordinary differential equations to which Eq. (4) reduces. It can be
shown that this system has solutions over all times, so our model is theoret-
ically consistent. With this model, the image J ◦ g−1

θ is therefore a random
deformation of the template (since θ is random). We assume that the ob-
served image I obtained from the deformed template after discretization and
addition of noise. More precisely, denoting [J ◦ g−1

θ ] =
∑S

i=1 δxi
J ◦ g−1

θ , the
observation I is a discrete image given by

I = [J ◦ g−1
θ ] + W, W ∼ N (0, σ2Id). (15)

The complete process is thus via the pair (θ, I). Our goal is, given
observations I1, . . . , IN having the same distribution as I above, to estimate
the template J and the noise variance σ2.

2.2 Prior distribution on the template

We want to constrain the virtually infinite dimensional template estimation
problem within a Bayesian strategy. We will introduce for this a hypertem-
plate, J0, and describe J as a random deformation of J0. The hypertemplate
is given, usually provided by an anatomical atlas. The template J is mod-
eled as J = J0 ◦g−1

µ with µ the initial momentum. We model µ as a discrete
momentum like in the previous section, with distribution

π(µ) =
1

Zπ
e−

1
2
(µ,Kπµ)1V ∗(x)(µ) (16)

for a reproducing kernel Kπ. In our experiments, we made the simple choice
Kπ = λK, for some regularization parameter λ > 0.

The relations between J0,J and I1, I2, ..., IN is illustrated in Figure 1.
Remark: In this model, J0 and J are continuous. J0 is a given continuous
function defined on Ω ∈ R

d, although it may be finitely generated (using
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J0 J
µ

I1

I2

IN

.

.

.

θ2

θ1

θN

Figure 1: The template J is to be estimated given hypertemplate J0 and
observed images I1, I2, ..., IN . We model the template as J = J0 ◦ g−1

µ ,
where µ is the random initial momentum. In the following EM algorithm,
µ is computed iteratively, with random initial momenta θ1, θ2, ..., θN being
hidden variables.

a finite element representation, for example). Observations I1, ..., IN are
discrete images. From these images, we will estimate the initial momentum
µ, and further get the continuous template J = J0 ◦ g−1

µ . For simplicity,

we will still denote, with a little abuse, J ◦ g−1
θn

to refer to its discretization

[J ◦ g−1
θn

].
Remark: The kernels K and Kπ are important components of the model,
and can be considered as infinite dimensional parameters. While not an
impossible task, trying to estimate them would significantly complicate our
procedure. Consequently, the kernels have been selected a priori, and left
fixed during the estimation procedure.

3 Template Estimation with the MAEM Algorithm

3.1 The complete-data log-likelihood

We here describe the estimation of parameters µ (which uniquely describes
the template) and σ2 based on the observation of I = {I1, I2, . . . , IN}. Our
goal is to compute argmaxµ,σ2 pσ(µ|I). We let Θ = {θ1, θ2, ..., θN} denote
the sequence of hidden initial momenta.

To use the EM algorithm we first write down the complete-data log-
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likelihood. The joint likelihood of the model given the observations is

p(µ, I,Θ) = π(µ)p(I,Θ|µ)

=
1

Zπ
e−

1
2
(µ,Kπµ)

N
∏

n=1

1

Z
e−

1
2
(θn,Kθn)− 1

2σ2 ‖J0◦g
−1
µ ◦g−1

θn
−In‖2

2−
1
2
S log σ2

(17)

where ‖I − I ′‖2
2 =

∑S
i=1(I(xi) − I ′(xi))

2.
The EM algorithm generates a sequence (µ(k), σ2(k)) according to the

transition (Eµ(k),σ2(k) is the expectation under the assumption that the true

parameters are µ(k) and σ2(k).)

(µ(k+1), σ2(k+1)) = argmax
µ,σ2

Eµ(k),σ2(k) (log pσ(µ, I,Θ)|I) .

The maximization is decomposed into two steps implying a generalized
EM algorithm:

σ2(k+1) = argmax
σ2

Eµ(k),σ2(k) (log pσ(µ, I,Θ)|I)

µ(k+1) = argmax
µ

Eµ(k),σ2(k+1) (log pσ(µ, I,Θ)|I) .

Define the complete-data log-likelihood Q(µ, σ2|µ(k), σ2(k), I) as the right
hand side of the previous equation which must be maximized alternatively
in µ and σ2:

Q(µ, σ2|µ(k), σ2(k), I)

= Eµ(k)

{

−
1

2
(µ,Kπµ)

−
N

∑

n=1

1

2
(θn,Kθn) −

1

2σ2

N
∑

n=1

‖J0 ◦ g−1
µ ◦ g−1

θn
− In‖

2
2 −

NS

2
log σ2

∣

∣

∣
I
}

+ C

= −
1

2
(µ,Kπµ) (18)

−
1

2σ2

N
∑

n=1

Eµ(k)

{

‖J0 ◦ g−1
µ ◦ g−1

θn
− In‖

2
2

∣

∣

∣
In

}

−
NS

2
log σ2 + C̃

where S is the number of grids (or pixels, voxels) and C and C̃ are expres-
sions that do not depend on µ or σ2. The maximization M-step at transition
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step k yields

σ2(k+1) =
1

SN

N
∑

n=1

Eµ(k)

{

‖J0 ◦ g−1
µ(k) ◦ g−1

θn
− In‖

2
2

∣

∣

∣
In

}

(19)

µ(k+1) = argmin
µ

{

(µ,Kπµ) (20)

+
1

σ2(k+1)

N
∑

n=1

Eµ(k)

{

‖J0 ◦ g−1
µ ◦ g−1

θn
− In‖

2
2

∣

∣

∣
In

}

}

Remark: One can find that this framework finally coincides with the Max-
imum a Posterior (MAP) estimation. However, MAP and EM rely on differ-
ent statistical hypotheses. The former esentially considering the unobserved
deformation as a parameter, and the latter as a hidden variable, which is
more suitable here since the deformation depends on the subject. So we use
a general EM algorithm instead of MAP estimation.

3.2 Maximization via the Euler Equation with Jacobian weight

This is the EM framework for template estimation. Now, the main difficulty
of the algorithm is the minimization in (20). To derive the Euler -Lagrange
Equation for the minimizer, we use the integral formula for the norm, so we
can avoid the interpolation problem associated with discrete sum definition
‖I − I ′‖2

2 =
∑S

i=1(I(xi) − I ′(xi))
2 which corresponds to signal plus additive

white noise. This makes the change of variable formula straightforward
and links us to the Euler-Lagrange equations on vector fields which have
been previously published. As well, our implementation is a discretization
of that continuum equation. Note that one can provide a fully discrete
analysis of the problem (relying on a representation of the images using
linear interpolations as in [1], where both images and deformations are linear
combinations of the kernels centered at the landmark points. ).

For the variation, let Vπ be the reproducing kernel Hilbert space associ-
ated to the prior kernel Kπ. Since the energy is conserved along geodesics,
we have

(µ,Kπµ) = ‖v0‖
2
Vπ

=

∫ 1

0
‖vt‖

2
Vπ

dt (21)

where v0 = Kπµ is the initial velocity. This connects our optimization in
the MAEM algorithm to the original LDDMM Euler-Lagrange equation of
[7].
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If gt is a time-dependent flow of diffeomorphisms, we let gs,t : Ω 7→ Ω
denote the composition gs,t(y) = gt ◦ (gs)

−1(y), meaning position at time t
of a particle that is at position y at time s. Let Dgs,t denote the Jacobian
of mapping gs,t, the matrix composed with the space derivatives. We add a
superscript v to indicate that gt = gv

t is the flow arising from (1). We state
how perturbations of the vector field affect the variation of the mapping in
the following lemma.

Lemma 3.1 The variation of mapping gv
s,t when v ∈ L2([0, 1], Vπ) is per-

turbed along h ∈ L2([0, 1], Vπ) is given by

∂hgv
s,t = lim

ε→0

gv+εh
s,t − gv

s,t

ε
= Dgv

s,t

∫ s

t
(Dgv

s,u)−1hu ◦ gv
s,udu. (22)

Refer to [7] for proof.
Then the maximization is reduced to what we term the weighted-LDDMM

image matching problem.

Proposition 3.1 (i) (Formalization to a weighted-LDDMM problem) At
stage k + 1 define the following ancillary average of the conditional mean:

Ī(k+1)(y) =

∑N
n=1 Eµ(k){In ◦ gθn

(y)|Dgθn
(y)|

∣

∣ In}
∑N

n=1 Eµ(k){|Dgθn
(y)|

∣

∣ In}
. (23)

Then the M-step of the generalized EM algorithm reduces to the weighted-
LDDMM algorithm:

µ(k+1) = argmin
µ

{

(µ,Kπµ)

+
N

∑

n=1

1

σ2(k+1)
Eµ(k)

{

‖J0 ◦ g−1
µ ◦ g−1

θn
− In‖

2
2

∣

∣

∣
In

}

}

= argmin
µ

{

(µ,Kπµ) +
1

σ2(k+1)

∫

Ω
(J ◦ g−1

µ (y) − Ī(k+1)(y))2α(k+1)(y)dy
}

(24)

with the Jacobian weight

α(k+1)(y) =

N
∑

n=1

Eµ(k){|Dgθn
(y)|

∣

∣ In}. (25)
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(ii) (The weighted Euler-Lagrange Equation) Given a continuously dif-
ferentiable template image J0, a target image Ī and Jacobian weight α, the
optimal velocity field v̂ ∈ L2[(0, 1), Vπ ] with v̂0 = Kπµ̂ for inexact matching
of J0 and Ī defined as

argmin
v:ġt=vt(gt)

{

∫ 1

0
‖vt‖

2
Vπ

dt +
1

σ2

∫

Ω
(Ī(y) − J0 ◦ g−1

µ (y))2α(y)dy
}

(26)

satisfies the Euler-Lagrange equation

2v̂t − Kπ

( 2

σ2
|Dgt,1|∇H0

t (H0
t − H1

t )α ◦ gt,1

)

= 0 (27)

where H0
t = J0 ◦ gt,0, H1

t = Ī ◦ gt,1.

The crucial idea here is that we are linked back to the basic LDDMM
image matching problem of Beg (α = 0), with the Jacobian playing a role.

Proof: (i)Let y = g−1
θn

(x), we have

‖J0 ◦ g−1
µ ◦ g−1

θn
− In‖

2
2

≈

∫

Ω
(J0 ◦ g−1

µ ◦ g−1
θn

(x) − In(x))2dx

=

∫

Ω
(J0 ◦ g−1

µ (y) − In ◦ gθn
(y))2|Dgθn

(y)|dy (28)
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With Ī(k+1) as defined in Eq. 23, we have, for all y ∈ Ω

N
∑

n=1

Eµ(k){(J0 ◦ g−1
µ (y) − In ◦ gθn

(y))2|Dgθn
(y)|

∣

∣ In}

=

N
∑

n=1

Eµ(k){(J0 ◦ g−1
µ (y) − Ī(k+1)(y)

+Ī(k+1)(y) − In ◦ gθn
(y))2|Dgθn

(y)|
∣

∣ In}

=

N
∑

n=1

Eµ(k){(J0 ◦ g−1
µ (y) − Ī(k+1)(y))2|Dgθn

(y)|

+(Ī(k+1)(y) − In ◦ gθn
(y))2|Dgθn

(y)|

+2(J0 ◦ g−1
µ (y) − Ī(k+1)(y))(Ī(k+1)(y)

−In ◦ gθn
(y))|Dgθn

(y)|
∣

∣ In}

=(a)
N

∑

n=1

Eµ(k){(J0 ◦ g−1
µ (y) − Ī(k+1)(y))2|Dgθn

(y)|

+(Ī(k+1)(y) − In ◦ gθn
(y))2|Dgθn

(y)|
∣

∣ In}

= (J0 ◦ g−1
µ (y) − Ī(k+1)(y))2

N
∑

n=1

Eµ(k){|Dgθn
(y)|

∣

∣ In}

+
N

∑

n=1

Eµ(k){(Ī(k+1)(y) − In ◦ gθn
(y))2|Dgθn

(y)|
∣

∣ In}. (29)

In (a), the fact that the cross item

N
∑

n=1

Eµ(k){(J0 ◦ g−1
µ (y)

−Ī(k+1)(y))(Ī(k+1)(y) − In ◦ gθn
(y))|Dgθn

(y)|
∣

∣ In}

= (J0 ◦ g−1
µ (y) − Ī(k+1)(y))

N
∑

n=1

Eµ(k){(Ī(k+1)(y)

−In ◦ gθn
(y))|Dgθn

(y)|
∣

∣ In} = 0

comes straightforward from the definition of Ī(k+1)(y).
Since the second term of Eq.(29) does not depend on µ, substituting

Eq. (29) into Eq. (20), we see that µ(k+1) must minimize

(µ,Kπµ) +
1

σ2(k+1)

∫

Ω
(Ī(k+1)(y) − J0 ◦ g−1

µ (y))2α(k+1)(y)dy (30)

14



with the Jacobian weight

α(k+1)(y) =
N

∑

n=1

Eµ(k){|Dgθn
(y)|

∣

∣ In} (31)

. With the optimal µ(k+1), we can compute gµ(k+1) by geodesic shooting

(Equation (4)), and further obtain the newly estimated template J (k+1) =
J0 ◦ g−1

µ(k+1) . This gives the first part of the proof.

(ii)The proof of the second half follows the derivation in [7]. Suppose the
velocity v ∈ L2([0, 1], Vπ) is perturbed along the direction h ∈ L2[(0, 1), Vπ ]
by an ε amount. The Gâteaux variation ∂hE(v) of the energy function is
expressed in term of the Fréchet derivative ∇vE

∂hE(v) = lim
ε→0

E(v + εh) − E(v)

ε
=

∫ 1

0
〈∇vEt, ht〉Vπdt. (32)

The variation of E1(v) =
∫ 1
0 ‖vt‖

2
Vπ

dt is given by

∂hE1(v) = 2

∫ 1

0
〈vt, ht〉Vπdt. (33)

The second part of the energy is

E2(v) =
1

σ2

∫

Ω
(J0 ◦ g−1

1 (y) − Ī(y))2α(y)dy

=
1

σ2
〈(J0 ◦ g1,0 − Ī)α, J0 ◦ g1,0 − Ī〉L2 . (34)

The variation of E2(v) is

∂hE2(v) =
2

σ2
〈(J0 ◦ g1,0 − Ī)α,DJ0 ◦ g1,0∂hg1,0〉L2

=(a) 2

σ2

〈

(J0 ◦ g1,0 − Ī)α,DJ0 ◦ g1,0

(

− Dg1,0

∫ 1

0
(Dg1,t)

−1ht ◦ g1,tdt
)〉

L2

=(b) −
2

σ2

∫ 1

0
〈(J0 ◦ g1,0 − Ī)α,D(J0 ◦ g1,0)(Dg1,t)

−1ht ◦ g1,t〉L2dt

(35)

with (a) derived straightly from Lemma 3.1 and (b) from the formulation
D(J0 ◦ g1,0) = DJ0 ◦ g1,0Dg1,0. Changing variable with z = g1,t(y) i.e.

15



gt,1(z) = y, one can obtain |dgt,1|dz = dy. The chain rule gives g1,0 ◦ gt,1 =
gt,0. In addition, D(I ◦ g) = (∇(I ◦ g))T . With these substitutions, we get

∂hE2(v) = −
2

σ2

∫ 1

0
〈|Dgt,1|(J0 ◦ gt,0 − Ī ◦ gt,1)α ◦ gt,1, D(J0 ◦ gt,0)ht〉L2dt

= −
2

σ2

∫ 1

0
〈|Dgt,1|∇(J0 ◦ gt,0)(J0 ◦ gt,0 − Ī ◦ gt,1)α ◦ gt,1, ht〉L2dt

= −

∫ 1

0
〈Kπ

( 2

σ2
|Dgt,1|∇(J0 ◦ gt,0)(J0 ◦ gt,0 − Ī ◦ gt,1)α ◦ gt,1

)

, ht〉Vπdt

= −

∫ 1

0
〈Kπ

( 2

σ2
|Dgt,1|∇H0

t (H0
t − H1

t )α ◦ gt,1

)

, ht〉Vπdt.

Combining the two parts of energy functional, the gradient is thus

(∇vEt)Vπ = 2vt − Kπ

( 2

σ2
|Dgt,1|∇H0

t (H0
t − H1

t )α ◦ gt,1

)

(36)

where the subscript Vπ in (∇vEt)Vπ is to clarify that the gradient is in the
space L2([0, 1], Vπ). The optimizing velocity fields satisfy the Euler-Lagrange
equation

∇hE(v̂) =

∫ 1

0

〈

2v̂t − Kπ

( 2

σ2
|Dgt,1|∇H0

t (H0
t − H1

t )α ◦ gt,1

)

, ht

〉

Vπ

dt = 0.

(37)

Since h is arbitrary in L2([0, 1], Vπ) we get Eq.(27).

�

Equation (36) provides the gradient flow that minimizes (26). Recall
that this problem must be solved to obtain the next deformation of the
hypertemplate: given the solution v̂, compute the initial momentum µ̂ =
(Kπ)−1v̂0, the optimal diffeomorphism gµ̂ and the new template J = J0◦g

−1
µ̂ .

Since the Euler-Lagrange equation for the Weighted LDDMM only differs
from the original equation by the α◦gt,1 factor, its implementation is a minor
modification to the basic one, for which we refer to [7] for details.

3.3 Computing the conditional mean via the mode

Another difficulty is to compute the conditional expectations, which cannot
be done analytically, given the highly nonlinear relation between θn and
In ◦ gθn

. The crudest approximation of the conditional distribution is to
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replace it by a Dirac measure at its mode, and this is the one we will select
for the time being. Already having J (k), estimation of the template in k-th

iteration, denote θ
(k)
n to be the minimizer of

(θn,Kθn) +
1

σ2(k)
‖J (k) ◦ g−1

θn
− In‖

2
2. (38)

The computation of Ī(k+1) now becomes:

Ī(k+1)(y) =

∑N
n=1 In ◦ g

θ
(k)
n

(y)|Dg
θ
(k)
n

(y)|
∑N

n=1 |Dg
θ
(k)
n

(y)|
. (39)

This also provides an approximation of the Jacobian weight

α(k+1)(y) =

N
∑

n=1

|Dg
θ
(k)
n

(y)|. (40)

Concerning the implementation, the computation of θ
(k)
n is done using the

LDDMM algorithm between the template J (k) and the target In. Note that

θ
(k)
n is not needed for Eq. (39), but only the deformed target In ◦ g

θ
(k)
n

and

the determinant of the Jacobian Dg
θ
(k)
n

.

3.4 Template Estimation Algorithm

Now, the template estimation algorithm can be summarized as the following:

Algorithm 3.1 (Template estimation) Having the hypertemplate J0 and
N observations I1, I2, ..., IN , we wish to estimate the template J and noise
variance σ2. Let J (k) denote the estimated template after k iterations with
initial guess J (0) = J0. Then, the (k + 1)th step is

(i) Map the current estimated template J (k) to In, n = 1, 2, ...N using
basic LDDMM, and obtain the deformed targets In ◦ g

θ
(k)
n

and Jacobian de-

terminants of the deformations |Dg
θ
(k)
n

|.

(ii) Compute the mean image Ī(k+1) and the Jacobian weight α(k+1) de-
fined by

Ī(k+1)(y) =

∑N
n=1 In ◦ g

θ
(k)
n

(y)|Dg
θ
(k)
n

(y)|
∑N

n=1 |Dg
θ
(k)
n

(y)|
, (41)

and

α(k+1)(y) =

N
∑

n=1

|Dg
θ
(k)
n

(y)| (42)
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where g
θ
(k)
n

is the optimal diffeomorphic mapping from J (k) to In and |Dg
θ
(k)
n

(y)|

is the determinant of its Jacobian matrix.
(iii)update the noise variance σ2

σ2(k+1) =
1

SN

N
∑

n=1

‖J0 ◦ g−1
µ(k) ◦ g−1

θ
(k)
n

− In‖
2
2 (43)

(iv) find µ(k+1) to minimize

(µ,Kπµ) +
1

σ2(k+1)
‖(Ī(k+1) − J0 ◦ g−1

µ )
√

α(k+1)‖2
2 (44)

using the weighted Euler-Lagrange equation described previously.
(v) the newly estimated template is J (k+1) = J0 ◦ g−1

µ(k+1) .

(vi) Stop if J (k) is stable or the number of iterations is larger than a
specific number. Else reiterate (i)-(iv).

4 Results and Discussions

Here we present numerical results of template estimation for 3D hippocam-
pus data and 3D cardiac data. All data are binarized segmented images
with grayscale 0-255 (the images are not strictly binary because of smooth-
ing and interpolation). For these experiments, we have used Kπ = λK with
a suitable value of λ.

Shown in Figure 2 is an example of template estimation of 3D hippocam-
pus data. Panel (a) is the hypertemplate and panel (b)-(i) are observations.
Panel (j) is the estimated template with λ = 0.01.

We present sections of the 3D data in Figure 3 to show more clearly that
the estimated template adapts to the shapes of observations.

We define the deformation metric, ρI(J, In) to be square root of the
deformation energy,

∫ 1
0 ‖v̂‖2

V , for the optimal velocity provided by the LD-
DMM algorithm. To show that the estimated template is a considerable
improvement upon the hypertemplate, we list the metrics ρI(J0, In) and
ρI(J (10), In) in Table 1, which are computed with the same parameters.
This shows a significant metric reduction from the original hypertemplate
to the template estimated after 10 steps.

To assess the convergence of the results, we investigate the differences
between the estimated templates in successive iterations

‖J (k) − J (k+1)‖2
2 =

1

S

S
∑

s=1

(J (k)(xs) − J (k+1)(xs))
2 (45)
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(a) hypertem-
plate J0

(b) I1 (c) I2 (d) I3

(e) I4 (f) I5 (g) I6

(h) I7 (i) I8 (j) I9

(k) estimated
template J (10)

Figure 2: Estimating the template from 3D hippocampus data. Panel (a) is
the hypertemplate. Panel (b)-(j) are observations In, n = 1, 2, ..., 9. Panel
(k) is the estimated template after 10 iterations. Data courtesy of Biomed-
ical Informatics Research Network.
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(a) hypertem-
plate J0

(b) I1 (c) I2 (d) I3

(e) I4 (f) I5 (g) I6

(h) I7 (i) I8 (j) I9

(k) estimated
template J (10)

Figure 3: Section view of 3D hippocampus data. Panel (a) is the hyper-
template. Panel (b)-(j) are observations In, n = 1, 2, ..., 9. Panel (k) is the
estimated template after 10 iterations. Data courtesy of Biomedical Infor-
matics Research Network.
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ρI(·, ·) J0 J (10)

I1 5.2995 4.2773
I2 7.6836 4.1446
I3 4.7706 3.7492
I4 4.9767 2.4993
I5 4.3480 3.3836
I6 4.2751 2.6810
I7 5.3083 3.2349
I8 5.1540 3.4601
I9 5.8151 3.6120

Table 1: The metric between
observations and J0, J

(10)

iteration k ‖J (k+1) − J (k)‖2
2 σ(k)

0 29.7629 1.0000
1 228.3461 8.5799
2 232.6406 22.1642
3 13.7406 27.1063
4 0.3902 24.5795
5 0.1638 23.8118
6 0.0776 23.6478
7 0.0036 23.5560
8 0.0014 23.5726
9 0.0003 23.5772

Table 2: Differences between the es-
timated templates in successive itera-
tions and estimated noise variances.

where S is the number of voxels and k = 0, 1, ..., 9. The results are shown
in Table 2. We see that the differences between J (k+1) and J (k) decrease
rapidly to a small value (approximately 0) in the first 10 iterations. This
indicates the results converge to a stable shape. In Table 2, we also show
the estimated noise levels, which converge too.

Finally we present the result for 3D heart template estimation. Panel
(a) of Figure 4 is the hypertemplate. Panel (b)-(g) are observations In, n =
1, 2, ..., 6. Panel (h) is the estimated template with λ = 0.0001 at 10th
iteration. Figure 5 is the section view.

In our model, the hypertemplate is considered as an ”ideal” continuous
image with fine structure, which can be provided by an atlas obtained from
other studies, although we here simply choose a representative image in the
population. Actually, as Figure 6 shows, different hypertemplates yield close
results, although they have minor difference.

λ controls how strongly the estimated template depends on the hyper-
template. This has been fixed by hands, but our experiments show a large
range of variation without noticeable difference in the final result. By taking
small values of λ, the prior reduces to an almost uniform distribution over
the orbit of the hypertemplate. We indeed took values between 0.0001 and
1 and obtained stable results.

Remark: In the above model, we assume the initial momenta µ follows a
prior distribution pπ(µ) and estimate the template given observations. We
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(a) hypertem-
plate J0

(b) I1 (c) I2 (d) I3

(e) I4 (f) I5 (g) I6

(h) estimated
template J (10)

Figure 4: Estimating the template from 3D heart data. Panel (a) is the
hypertemplate. Panel (b)-(g) are observations In, n = 1, 2, ..., 6. Panel (h)
is the estimated template after 10 iterations. Data courtesy of Dr. Patrick
Helm, previously of Dept. of Biomedical Engineering, Johns Hopkins Uni-
versity.
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(a) hypertem-
plate J0

(b) I1 (c) I2 (d) I3

(e) I4 (f) I5 (g) I6

(h) estimated
template J (10)

Figure 5: Section view of 3D heart data. Panel (a) is the hypertemplate.
Panel (b)-(g) are observations In, n = 1, 2, ..., 6. Panel (h) is the estimated
template after 10 iterations. Data courtesy of Dr. Patrick Helm, previously
of Dept. of Biomedical Engineering, Johns Hopkins University.
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(a)
hypertemplate 1

(b) result

(c)
hypertemplate 2

(d) result

(e)
hypertemplate 3

(f) result

(g)
hypertemplate 4

(h) result

Figure 6: For the same observed population, we choose different images as
hypertemplate, λ = 0.01. The results only have minor differences.
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call this the “full model”. We can simplify this model by neglecting the prior
and just estimate the maximum likelihood of the template J . The MAEM
algorithm on this setting will lead us to iterate the procedure of

Ī(k+1)(y) =

∑N
n=1 In ◦ g

θ
(k)
n

(y)|dygθ
(k)
n

|
∑N

n=1 |dygθ
(k)
n

|
. (46)

The resulting algorithm is similar to [8]. The difference is that the model
in [8] warps the observations to match the template and places the white
noise between the deformed target and the template, which does not induce
a jacobian in the averaging process. However, for a generative model, the
logical progression is from template to target. From this point of view, [8]
implies an observation noise that is proportional to the inverse jacobian of
the deformation, which is hard to justify.

Figure 7 and Figure 8 compare the full model and the simplified model.
The simplified model performed relatively poorly compared with the full
model that used the prior. This discrepancy comes from the fact that we
simultaneously estimate the template and the noise variance. This estimated
value of the noise variance allows for some difference between the deformed
template and the targets, yielding fuzzy boundaries in the simplified model.
If we set the noise variance to a small number, we may obtain sharper
boundaries using the simplified model, but this would estimate a template
essentially as a metric average (a Fréchet mean) of the targets and would
not be consistent with our generative model.

(a) Jfull (b) Jsimplified

Figure 7: The template estimation results of full model and simplified model
for hippocampus data. Data courtesy of Biomedical Informatics Research
Network.
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(a) Jfull (b) Jsimplified

Figure 8: The template estimation results of full model and simplified model
for cardiac data. Data courtesy of Dr. Patrick Helm, previously of Dept. of
Biomedical Engineering, Johns Hopkins University.

5 Conclusion

In conclusion, we have presented in this paper a Bayesian model for tem-
plate estimation in CA. By the momentum conservation law, the space of
initial momenta is a linear space where statistical analysis can be applied.
It is assumed that observed images I1, I2, ..., IN are generated by shoot-
ing the template J0 through gaussian-distributed random initial momenta
θ1, θ2, ..., θN . The template J is modeled as a deformation from a given hy-
pertemplate J0 with initial momentum µ, which has a gaussian prior. This
allows us to apply an generalized EM algorithm MAEM to computing the
Bayesian estimation of the initial momentum µ, where the conditional ex-
pectation of the EM is approached by a Dirac measure, so that one can take
the advantage of the LDDMM algorithm. The MAEM procedure finally
leads to an image mapping problem from J0 to Ī with Jacobian weight α in
the energy term, which is solved by the weighted Euler-Lagrange Equation.
In particular, we apply this method to template estimation for hippocam-
pus and cardiac images. We show that the estimated template is “closer” to
observations compared to the hypertemplate, and the differences between
the estimated templates in successive iterations decrease to almost 0, which
indicates the convergence of the algorithm. We also show the results are
stable with different hypertemplates.
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