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Abstract

Templatesplay a fundamental role in Computational Anatomy. In
this paper, we present a Bayesianmodel for template estimation. It is
assumedthat observed imagesI 1; I 2; :::; I N are generatedby shooting
the template J through Gaussiandistributed random initial momenta
� 1; � 2; :::; � N . The template J is modeledasa deformation from a given
hypertemplate J0 with initial momentum � , which hasa gaussianprior.
We apply a mode approximation of the EM (MAEM) procedure,where
the conditional expectation is replaced by the Dirac measure. This
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leadsus to an image matching problem with a Jacobian weight term,
and we solve it by deriving the weighted Euler-Lagrangeequation. The
results of template estimation for hippocampus and cardiac data are
presented.

Keyw ords: template estimation, computational anatomy, Bayesian,
weighted Euler-Lagrangeequation

1 In tro duction

Computational Anatomy (CA) is the mathematical study of variabilit y of
anatomical and biological shapes. The framework has been pioneered by
Grenander [12] through the notion of deformable templates. Given a tem-
plate I temp , the group of di�eomorphisms G acts on it to generatean orbit
I = G:I temp , a whole family of new objects with similar structure as I temp .
Hence,onecan model elements in the orbit I via di�eomorphic transforma-
tions.

Templatesplay an important role in CA. They are usually usedto gener-
ate digital anatomical atlasesand act as a referencewhen computing shape
variabilit y. Often, templates have beenchosento bemanually selected\t yp-
ical" observed images. It is however preferable to build a template based
on statistical properties of the observed population. There hasbeenby now
several publications addressingthe issueof shape averaging over a dataset.
In this context, the average is based on metric properties of the spaceof
shapes; assuming a distance in shape spaceis given, the average of a set
of shapes is a minimizer of the sum of squaredistancesto each element of
the set (Fr�echet or Karcher mean). When the shape spaceis modeled as
a Riemannian manifold, a local minimum of this sum of squareddistances
must be such that the sum of initial velocities of the geodesicsbetweenthe
averageand each of the elements in the set vanishes. This leads to the fol-
lowing averaging procedure(sometimescalled procrustean averaging) which
consistsin (i)starting with an initial guessof the average,(ii) computing all
the geodesicsbetween this current averageand each element in the set of
shapes,(iii) averaging their initial velocities and (iv) displacing the current
average to the endpoint of the geodesic starting with the initial velocity,
this being iterated until convergence[13, 20, 10, 16, 21]. A di�eren t varia-
tional de�nition of the averagehasbeenprovided in [8, 5, 4]. In the present
work, however, we do not build the template as a metric average, but as
the central component of a generative statistical model for the anatomy.
This is reminiscent of the construction developed in [1] for linear models of
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deformations, and in [11] for thin-plate models of points set.
In our application of Grenander's pattern theory, anatomical shapes

are modeled as an orbit under the action of the group of di�eomorphisms.
Becauseof this, di�eomorphisms play an important role in our statistical
model. The nonlinear spaceof di�eomorphisms can be studied as an in�-
nite dimensional Riemannian manifold, on which, with a suitable choice of
metric, geodesic equations are described by a momentum conservation law
[2, 3, 15, 17]. In our context, the methodologyof geodesicshooting [23, 19] re-
lies on this conservation law to derive statistical modelson di�eomorphisms
and deformable objects. Through the geodesic equations, the 
o w at any
point along the geodesicis completely determined (oncea template is �xed)
by the momentum at the origin. The initial momentum therefore provides
a linear representation of the nonlinear di�eomorphic shape spacein a local
chart around the template, to which linear statistical analysis can be ap-
plied. Note that metric averaging can be reconnectedto geodesic shooting
[23, 14]. In this case,the algorithm is: �rst, compute the geodesic from a
given template I 0 to several target imagesand obtain the initial momenta
of each transformations; second,compute the mean initial momentum �m;
then, shoot I 0 with initial momentum �m to get a new image �I ; iterate this
procedure. This approach was used in landmark matching [23], 3D average
digital atlas construction [6] and quantifying variabilit y in heart geometry
[14].

In this paper, we introduce a random statistical model on the initial
momentum to represent random deformationsof a template. The generative
model we use combines this deformation with someobservation noise. We
will then develop a strategy to estimate the template from observations,
basedon the \Mo de Approximation of the EM algorithm" (MAEM), under
a Bayesian framework.

The paper is organized as follows. We �rst provide some background
material and notation related to di�eomorphisms and their use in compu-
tational anatomy. We then discusstemplate estimation and detail the sta-
tistical model and the implementation of the MAEM procedure. This will
require in particular introducing an extension of the LDDMM algorithm
[7, 18] to the casewhere the data attachment term hasa nonstationary spa-
tial weight. We �nally provide experimental results, with a comparisonwith
a simpli�ed, non-bayesian,approach.
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1.1 Background

Let the background space
 � Rd bea boundeddomain on which the images
are de�ned. To a template I temp correspondsthe orbit I = f I temp � g� 1 : g 2
Gg under the group of di�eormorphisms G. For any two anatomical images
J; I 2 I , there exists a set of di�eomorphisms (denote g as an arbitrary
element in the set) that registers the given images: I = J � g� 1. Following
[9, 22], when we de�ne the orbit I , we restrict to di�eomorphisms that can
be generatedas 
o ws gt ; t 2 [0; 1] controlled by a velocity �eld vt , with the
relation

@gt

@t
(x) = vt (gt (x)) ; x 2 
 ; t 2 [0; 1] (1)

with initial condition g0 = id. To ensure that the ODEs generate dif-
feomorphisms, the vector �elds are constrained to be su�cien tly smooth
[9, 22]. More speci�cally , they are assumedto belongto (V; k � kV ), a Hilb ert
spacewith squared norm de�ned as kvkV = (Av; v) through an operator
A : V 7! V � , where V � is the dual spaceof V . For v 2 V , Av can be
consideredas a linear form on V (a mapping from V to R) through the
identi�cation (Av; w) = hv; wi V , where (Av; w) is the standard notation for
a linear form Av applied to w. Interpreting kvk2

V = (Av; v) as an energy,
Av will be called the momentum associated to the velocity v. We assume
that V can be embedded in a spaceof smooth functions, which makes it a
reproducing kernel Hilb ert spacewith kernel K = A � 1 : V � 7! V .

The geodesicsin the group of di�eomorphisms are time-dependent dif-
feomorphismst 7! gt de�ned by (1) such that the integrated energy

Z 1

0
kvt k2

V dt (2)

is minimal with �xed boundary conditions g0 and g1. The image matching
problem betweenJ and I is formalized asthe search for the optimal geodesic
starting at g0 = id such that I = J � g� 1

1 . From this is derived the inexact
matching problem, which consists in �nding a time-dependent vector �eld
vt solution of the problem

v̂ = argmin
v: _gt = vt (gt )

� Z 1

0
kvt k2

V dt +
1
� 2 kJ � g� 1

1 � I k2
2

�
: (3)

Geodesicsare characterized by the following Euler equation (sometimes
called EPDi� [15]), which can be interpreted as a conservation equation for
the momentum Av [2, 3]. The equation is

@Av t

@t
+ (Dvt )� Av t + div(vt )Av t + D(Av t )vt = 0: (4)
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Basedon this, Beg et al. [7] developed the LDDMM algorithm for image
matching. Solutions of LDDMM are geodesicsconnectingg0 = id and g1 for
the metric de�ned by (2) on groups of di�eomorphisms, hencethey satisfy
the EPDi� equation [19].

The conservation of momentum is described as follows. Let w0 be a
vector �eld, and wt = Dgt (g� 1

t )w0(g� 1
t ) be the transported vector �eld along

the geodesic. Then, if Av t satis�es Eq. (4), we have:

@
@t

(Av t ; wt ) = 0: (5)

This implies Av t = (Dg� 1
t )� Av0(g� 1

t )jDg� 1
t j; t 2 [0; 1], meaning that the

geodesicevolution in the orbit J � g� 1
t dependsonly on J and the momentum

at time 0. The solution of (3) satis�es this property in an even simpler form,
which explicitly provides the momentum Av t in function of the deformed
imagesand the di�eomorphism gt [7, 18]. Moreover, Eq. (5) can be shown
to have singular solutions that propagate over time. In 
uid mechanics,
EPDi� is used to model the propagation of waves on shallow water. In
our context, it provides a very simple form to �nitely generatemodels of
deformation (seesection 3.2).

Hence, the nonlinear di�eomorphic shapes can be represented by the
initial momenta which lie on a linear space(the dual of V ). This provides
a powerful vehicle for statistical analysis of shapes. In this paper, we in-
vestigate a statistical model of deformable template estimation using this
property.

2 Metho dology of Template Estimation

2.1 Statistical model for the anatom y

In addition to the conservation of momentum discussedin the previous
section, solutions of (3) have also their energy conserved (since they are
geodesics): kvt k2

V is independent of time. Becauseof this, problem (3) is
equivalent to

v̂ = argmin
v: _gt = vt (gt )

�
kv0k2

V +
1
� 2 kJ � g� 1

1 � I k2
2

�
: (6)

where v0 is the initial velocity. So the minimization is now restricted to
time-dependent vector �elds v that satisfy (4). The minimized expression
may formally be interpreted as a joint log-likelihood for the initial velocity
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v0 and observed image I in which v0 would be a random �eld (with V as
a reproducing space)generating, via (4), a di�eomorphism g1, and I would
be obtained from the deformed template by the addition of a white noise.

This is essentially the model we adopt in this paper, under a discrete
form that will be more amenableto rigorous computation. Recall that we
have de�ned the duality operator A on V as associating to v in V the linear
form Av 2 V � de�ned by (Av; w) = hv; wi V . By the Riesz representation
theorem, A is invertible with inverseA � 1 = K . The discretization will be
done on the momentum, m = Av, instead of the velocity �eld v.

Note that the sets V and V � are isometric if V � is equipped with the
product hm; ~mi V � = (m; K ~m) for m; ~m 2 V � . Therefore, the norm of initial
velocity is equal to the norm of corresponding initial momentum, that is,
for m0 = Av0, we have

(Av0; v0) = kv0k2
V = km0k2

V � = (m0; K m0): (7)

Formally again, this may be interpreted as the log-likelihood of a Gaus-
sian distribution on V � with covarianceoperator A = K � 1, characterizedby
the property that, for any w 2 V , (m0; w) is a centered Gaussiandistribution
with variance

Ef (m0; w)2g = (Aw; w) = kwk2
V : (8)

We now discussa discrete version of this random �eld. For x; a 2 Rd,
denote a � � x the linear form w 7! (a � � x ; w) := aT w(x). Noting that
K (a � � x ) 2 V is, by de�nition, a vector �eld on V that dependslinearly on
a, we make the abuseof notation

K (a � � x )(y) = K (y; x)a

where K (y; x) is a d by d matrix (the reproducing kernel of V ). It can be
checked that K (x; y) = K (y; x)T and

hK (�; y)a;K (�; z)bi V = aT K (y; z)b:

We model the random momentum � as a sum of such measures

� =
SX

i =1

ai � � x i (9)

where x1; x2; :::; xS 2 
 form a set of �xed (deterministic) points (for ex-
ample, the grid supporting the image discretization) and a = (a1; a2; :::; aS)
are random variables such that a � N (0; �) in RSd. We want to choose
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� consistently with our formal interpretation of Eq.(7). For this, we can
compute, for w 2 V

(� ; w) =
SX

i =1

aT
i w(x i ) (10)

which is a Gaussianwith mean 0 and variance

SX

i;j =1

w(x i )T � ij w(x j )

where � ij is the d by d matrix E(ai aT
j ). We want to compare this to

equation (8), and in particular ensurethat both expressionscoincide when
w = K (�; xk )b for someb 2 Rd and k 2 f 1; : : : ; Sg. In this case,we have
kwk2

V = bT K (xk ; xk )b yielding the constraint: for all k

K (xk ; xk ) =
SX

i;j =1

K (xk ; x i )� ij K (x j ; xk ):

De�ne ~K ij = K (x i ; x j ) and assumethat the block matrix ~K = ( ~K ij ) is
invertible. Then the equation above is equivalent to � = ~K � 1, which com-
pletely describesthe distribution of (a1; : : : ; aS).

The probabilit y density function (p.d.f ) of a is given by

p(a) =
1
Z

e� 1
2 aT � � 1a =

1
Z

e� 1
2 aT ~K a (11)

where Z = (2� )Sd=2=
p

det ~K .
It is interesting to notice that we have, with � =

P S
i=1 ai � � x i ,

(� ; K � ) =
SX

i;j =1

(ai � � x i ; K (�; x j )aj ) (12)

=
SX

i;j =1

aT
i K (x i ; x j )aj

= aT ~K a: (13)

So the p.d.f of � can be written as

p(� ) =
1
Z

e� 1
2 (� ;K � )1V � (x)(� ) (14)
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where 1 represents the indicator function and V � (x) = f � =
P S

i=1 ai �
� x i ; a1; : : : ; aS 2 Rdg. Sincein the in�nite dimensional spaceV � , our model
is a singular Gaussiandistribution supported by the �nite dimensionalspace
V � (x). When restricted on this space,it is continuous with respect to the
Lebesguemeasurewith a density provided by Eq. (14).

This describesthe deformation part of the model, represented asthe dis-
tribution of the initial momentum � . We can solve (4) with initial condition
Av0 = � from time t = 0 to t = 1 and integrate the velocity �eld t 7! vt to
obtain a di�eomorphism, that we shall denote g� , at time t = 1. Although
we will not usethis fact in our numerical methods, it is important to notice
that g� can be obtained from � (given by Eq. (9)) via the solution of a sys-
tem of ordinary di�eren tial equations to which Eq. (4) reduces. It can be
shown that this systemhassolutions over all times, soour model is theoret-
ically consistent. With this model, the image J � g� 1

� is therefore a random
deformation of the template (since � is random). We assumethat the ob-
served imageI obtained from the deformedtemplate after discretization and
addition of noise. More precisely, denoting [J � g� 1

� ] =
P S

i=1 � x i J � g� 1
� , the

observation I is a discrete image given by

I = [J � g� 1
� ] + W; W � N (0; � 2I d): (15)

The complete processis thus via the pair (� ; I ). Our goal is, given
observations I 1; : : : ; I N having the samedistribution as I above, to estimate
the template J and the noisevariance � 2.

2.2 Prior distribution on the template

We want to constrain the virtually in�nite dimensional template estimation
problem within a Bayesianstrategy. We will introduce for this a hypertem-
plate, J0, and describe J asa random deformation of J0. The hypertemplate
is given, usually provided by an anatomical atlas. The template J is mod-
eledasJ = J0 � g� 1

� with � the initial momentum. We model � asa discrete
momentum like in the previous section, with distribution

� (� ) =
1

Z �
e� 1

2 (�;K � � )1V � (x) (� ) (16)

for a reproducing kernel K � . In our experiments, we madethe simple choice
K � = �K , for someregularization parameter � > 0.

The relations betweenJ0,J and I 1; I 2; :::; I N is illustrated in Figure 1.
Remark : In this model, J0 and J are continuous. J0 is a given continuous
function de�ned on 
 2 Rd, although it may be �nitely generated (using
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J0 J
�

I 1

I 2

I N

...

� 2

� 1

� N

Figure 1: The template J is to be estimated given hypertemplate J0 and
observed images I 1; I 2; :::; I N . We model the template as J = J0 � g� 1

� ,
where � is the random initial momentum. In the following EM algorithm,
� is computed iterativ ely, with random initial momenta � 1; � 2; :::; � N being
hidden variables.

a �nite element representation, for example). Observations I 1; :::; I N are
discrete images. From theseimages,we will estimate the initial momentum
� , and further get the continuous template J = J0 � g� 1

� . For simplicit y,
we will still denote, with a little abuse,J � g� 1

� n
to refer to its discretization

[J � g� 1
� n

].
Remark : The kernelsK and K � are important components of the model,
and can be consideredas in�nite dimensional parameters. While not an
impossibletask, trying to estimate them would signi�cantly complicate our
procedure. Consequently, the kernels have been selecteda priori, and left
�xed during the estimation procedure.

3 Template Estimation with the MAEM Algorithm

3.1 The complete-data log-lik eliho od

We here describe the estimation of parameters � (which uniquely describes
the template) and � 2 basedon the observation of I = f I 1; I 2; : : : ; I N g. Our
goal is to compute argmax�;� 2 p� (� jI ). We let � = f � 1; � 2; :::; � N g denote
the sequenceof hidden initial momenta.

To use the EM algorithm we �rst write down the complete-data log-
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likelihood. The joint likelihood of the model given the observations is

p(�; I ; �) = � (� )p(I ; � j� )

=
1

Z �
e� 1

2 (�;K � � )
NY

n=1

1
Z

e� 1
2 (� n ;K � n )� 1

2� 2 kJ0 � g� 1
� � g� 1

� n
� I n k2

2 � 1
2 S log � 2

(17)

where kI � I 0k2
2 =

P S
i=1 (I (x i ) � I 0(x i ))2.

The EM algorithm generatesa sequence(� (k) ; � 2(k) ) according to the
transition (E � ( k ) ;� 2( k ) is the expectation under the assumption that the true
parametersare � (k) and � 2(k) .)

(� (k+1) ; � 2(k+1) ) = argmax
�;� 2

E � ( k ) ;� 2( k ) (log p� (�; I ; � )jI ) :

The maximization is decomposedinto two steps implying a generalized
EM algorithm:

� 2(k+1) = argmax
� 2

E � ( k ) ;� 2( k ) (log p� (�; I ; � )jI )

� (k+1) = argmax
�

E � ( k ) ;� 2( k +1) (log p� (�; I ; � )jI ) :

De�ne the complete-datalog-likelihood Q(�; � 2j� (k) ; � 2(k) ; I ) asthe right
hand side of the previous equation which must be maximized alternatively
in � and � 2:

Q(�; � 2j� (k) ; � 2(k) ; I )

= E � ( k )

n
�

1
2

(�; K � � )

�
NX

n=1

1
2

(� n ; K � n) �
1

2� 2

NX

n=1

kJ0 � g� 1
� � g� 1

� n
� I nk2

2 �
N S
2

log � 2
�
�
� I

o
+ C

= �
1
2

(�; K � � ) (18)

�
1

2� 2

NX

n=1

E � ( k )

n
kJ0 � g� 1

� � g� 1
� n

� I nk2
2

�
�
� I n

o
�

N S
2

log� 2 + ~C

where S is the number of grids (or pixels, voxels) and C and ~C are expres-
sionsthat do not depend on � or � 2. The maximization M-step at transition
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step k yields

� 2(k+1) =
1

SN

NX

n=1

E � ( k )

n
kJ0 � g� 1

� ( k ) � g� 1
� n

� I nk2
2

�
�
� I n

o
(19)

� (k+1) = argmin
�

n
(�; K � � ) (20)

+
1

� 2(k+1)

NX

n=1

E � ( k )

�
kJ0 � g� 1

� � g� 1
� n

� I nk2
2

�
�
� I n

	 o

Remark: One can �nd that this framework �nally coincideswith the Max-
imum a Posterior (MAP) estimation. However, MAP and EM rely on di�er-
ent statistical hypotheses.The former esentially consideringthe unobserved
deformation as a parameter, and the latter as a hidden variable, which is
more suitable heresincethe deformation dependson the subject. Sowe use
a generalEM algorithm instead of MAP estimation.

3.2 Maximization via the Euler Equation with Jacobian weight

This is the EM framework for template estimation. Now, the main di�cult y
of the algorithm is the minimization in (20). To derive the Euler -Lagrange
Equation for the minimizer, we usethe integral formula for the norm, so we
can avoid the interpolation problem associated with discrete sum de�nition
kI � I 0k2

2 =
P S

i=1 (I (x i ) � I 0(x i ))2 which corresponds to signal plus additiv e
white noise. This makes the change of variable formula straightforward
and links us to the Euler-Lagrange equations on vector �elds which have
been previously published. As well, our implementation is a discretization
of that continuum equation. Note that one can provide a fully discrete
analysis of the problem (relying on a representation of the images using
linear interpolations asin [1], whereboth imagesand deformationsare linear
combinations of the kernelscentered at the landmark points. ).

For the variation, let V� be the reproducing kernel Hilb ert spaceassoci-
ated to the prior kernel K � . Sincethe energy is conserved along geodesics,
we have

(�; K � � ) = kv0k2
V�

=
Z 1

0
kvt k2

V�
dt (21)

where v0 = K � � is the initial velocity. This connectsour optimization in
the MAEM algorithm to the original LDDMM Euler-Lagrange equation of
[7].
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If gt is a time-dependent 
o w of di�eomorphisms, we let gs;t : 
 7! 

denote the composition gs;t (y) = gt � (gs)� 1(y), meaning position at time t
of a particle that is at position y at time s. Let Dgs;t denote the Jacobian
of mapping gs;t , the matrix composedwith the spacederivatives. We add a
superscript v to indicate that gt = gv

t is the 
o w arising from (1). We state
how perturbations of the vector �eld a�ect the variation of the mapping in
the following lemma.

Lemma 3.1 The variation of mapping gv
s;t when v 2 L 2([0; 1]; V� ) is per-

turbed along h 2 L 2([0; 1]; V� ) is given by

@hgv
s;t = lim

� ! 0

gv+ �h
s;t � gv

s;t

�
= Dgv

s;t

Z s

t
(Dgv

s;u )� 1hu � gv
s;udu: (22)

Refer to [7] for proof.
Then the maximization is reducedto what weterm the weighted-LDDMM

image matching problem.

Prop osition 3.1 (i) (Formalization to a weighted-LDDMM problem) At
stagek + 1 de�ne the following ancil lary averageof the conditional mean:

�I (k+1) (y) =

P N
n=1 E � ( k ) f I n � g� n (y)jDg� n (y)j

�
� I ng

P N
n=1 E � ( k ) fj Dg� n (y)j

�
� I ng

: (23)

Then the M-step of the generalized EM algorithm reduces to the weighted-
LDDMM algorithm:

� (k+1) = argmin
�

n
(�; K � � )

+
NX

n=1

1
� 2(k+1)

E � ( k )

�
kJ0 � g� 1

� � g� 1
� n

� I nk2
2

�
�
� I n

	 o

= argmin
�

n
(�; K � � ) +

1
� 2(k+1)

Z



(J � g� 1

� (y) � �I (k+1) (y))2� (k+1) (y)dy
o

(24)

with the Jacobian weight

� (k+1) (y) =
NX

n=1

E � ( k ) fj Dg� n (y)j
�
� I ng: (25)
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(ii) (The weighted Euler-Lagrange Equation) Given a continuously dif-
ferentiable template image J0, a target image �I and Jacobian weight � , the
optimal velocity �eld v̂ 2 L 2[(0; 1); V� ] with v̂0 = K � �̂ for inexact matching
of J0 and �I de�ned as

argmin
v: _gt = vt (gt )

n Z 1

0
kvt k2

V�
dt +

1
� 2

Z



( �I (y) � J0 � g� 1

� (y))2� (y)dy
o

(26)

satis�es the Euler-Lagrangeequation

2v̂t � K �

� 2
� 2 jDgt;1jr H 0

t (H 0
t � H 1

t )� � gt;1

�
= 0 (27)

where H 0
t = J0 � gt;0, H 1

t = �I � gt;1.

The crucial idea here is that we are linked back to the basic LDDMM
image matching problem of Beg (� = 0), with the Jacobian playing a role.

Pro of: (i)Let y = g� 1
� n

(x), we have

kJ0 � g� 1
� � g� 1

� n
� I nk2

2

�
Z



(J0 � g� 1

� � g� 1
� n

(x) � I n (x))2dx

=
Z



(J0 � g� 1

� (y) � I n � g� n (y))2jDg� n (y)jdy (28)
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With �I (k+1) as de�ned in Eq. 23, we have, for all y 2 

NX

n=1

E � ( k ) f (J0 � g� 1
� (y) � I n � g� n (y))2jDg� n (y)j

�
� I ng

=
NX

n=1

E � ( k ) f (J0 � g� 1
� (y) � �I (k+1) (y)

+ �I (k+1) (y) � I n � g� n (y))2jDg� n (y)j
�
� I ng

=
NX

n=1

E � ( k ) f (J0 � g� 1
� (y) � �I (k+1) (y))2jDg� n (y)j

+( �I (k+1) (y) � I n � g� n (y))2jDg� n (y)j

+2( J0 � g� 1
� (y) � �I (k+1) (y))( �I (k+1) (y)

� I n � g� n (y)) jDg� n (y)j
�
� I ng

= (a)
NX

n=1

E � ( k ) f (J0 � g� 1
� (y) � �I (k+1) (y))2jDg� n (y)j

+( �I (k+1) (y) � I n � g� n (y))2jDg� n (y)j
�
� I ng

= (J0 � g� 1
� (y) � �I (k+1) (y))2

NX

n=1

E � ( k ) fj Dg� n (y)j
�
� I ng

+
NX

n=1

E � ( k ) f ( �I (k+1) (y) � I n � g� n (y))2jDg� n (y)j
�
� I ng: (29)

In (a), the fact that the crossitem

NX

n=1

E � ( k ) f (J0 � g� 1
� (y)

� �I (k+1) (y))( �I (k+1) (y) � I n � g� n (y)) jDg� n (y)j
�
� I ng

= (J0 � g� 1
� (y) � �I (k+1) (y))

NX

n=1

E � ( k ) f ( �I (k+1) (y)

� I n � g� n (y)) jDg� n (y)j
�
� I ng = 0

comesstraightforward from the de�nition of �I (k+1) (y).
Since the secondterm of Eq.(29) does not depend on � , substituting

Eq. (29) into Eq. (20), we seethat � (k+1) must minimize

(�; K � � ) +
1

� 2(k+1)

Z



( �I (k+1) (y) � J0 � g� 1

� (y))2� (k+1) (y)dy (30)
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with the Jacobian weight

� (k+1) (y) =
NX

n=1

E � ( k ) fj Dg� n (y)j
�
� I ng (31)

. With the optimal � (k+1) , we can compute g� ( k +1) by geodesic shooting
(Equation (4)), and further obtain the newly estimated template J (k+1) =
J0 � g� 1

� ( k +1) . This gives the �rst part of the proof.
(ii)The proof of the secondhalf follows the derivation in [7]. Supposethe

velocity v 2 L 2([0; 1]; V� ) is perturb ed along the direction h 2 L 2[(0; 1); V� ]
by an � amount. The Gâteaux variation @hE(v) of the energy function is
expressedin term of the Fr�echet derivative r vE

@hE(v) = lim
� ! 0

E(v + �h ) � E(v)
�

=
Z 1

0
hr vE t ; ht i V� dt: (32)

The variation of E1(v) =
R1

0 kvt k2
V�

dt is given by

@hE1(v) = 2
Z 1

0
hvt ; ht i V� dt: (33)

The secondpart of the energy is

E2(v) =
1
� 2

Z



(J0 � g� 1

1 (y) � �I (y))2� (y)dy

=
1
� 2 h(J0 � g1;0 � �I )�; J0 � g1;0 � �I i L 2 : (34)

The variation of E2(v) is

@hE2(v) =
2
� 2 h(J0 � g1;0 � �I )�; DJ0 � g1;0@hg1;0i L 2

= (a) 2
� 2

D
(J0 � g1;0 � �I )�; DJ0 � g1;0

�
� Dg1;0

Z 1

0
(Dg1;t )� 1ht � g1;t dt

�E

L 2

= (b) �
2
� 2

Z 1

0
h(J0 � g1;0 � �I )�; D (J0 � g1;0)(Dg1;t )� 1ht � g1;t i L 2 dt

(35)

with (a) derived straightly from Lemma 3.1 and (b) from the formulation
D(J0 � g1;0) = DJ0 � g1;0Dg1;0. Changing variable with z = g1;t (y) i.e.
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gt;1(z) = y, one can obtain jdgt;1jdz = dy. The chain rule givesg1;0 � gt;1 =
gt;0. In addition, D (I � g) = (r (I � g)) T . With thesesubstitutions, we get

@hE2(v) = �
2
� 2

Z 1

0
hjDgt;1j(J0 � gt;0 � �I � gt;1)� � gt;1; D (J0 � gt;0)ht i L 2 dt

= �
2
� 2

Z 1

0
hjDgt;1jr (J0 � gt;0)(J0 � gt;0 � �I � gt;1)� � gt;1; ht i L 2 dt

= �
Z 1

0
hK �

� 2
� 2 jDgt;1jr (J0 � gt;0)(J0 � gt;0 � �I � gt;1)� � gt;1

�
; ht i V� dt

= �
Z 1

0
hK �

� 2
� 2 jDgt;1jr H 0

t (H 0
t � H 1

t )� � gt;1

�
; ht i V� dt:

Combining the two parts of energy functional, the gradient is thus

(r vE t )V� = 2vt � K �

� 2
� 2 jDgt;1jr H 0

t (H 0
t � H 1

t )� � gt;1

�
(36)

where the subscript V� in (r vE t )V� is to clarify that the gradient is in the
spaceL 2([0; 1]; V� ). The optimizing velocity �elds satisfy the Euler-Lagrange
equation

r hE(v̂) =
Z 1

0

D
2v̂t � K �

� 2
� 2 jDgt;1jr H 0

t (H 0
t � H 1

t )� � gt;1

�
; ht

E

V�
dt = 0:

(37)

Sinceh is arbitrary in L 2([0; 1]; V� ) we get Eq.(27).

�

Equation (36) provides the gradient 
o w that minimizes (26). Recall
that this problem must be solved to obtain the next deformation of the
hypertemplate: given the solution v̂, compute the initial momentum �̂ =
(K � )� 1v̂0, the optimal di�eomorphism g�̂ and the newtemplate J = J0� g� 1

�̂ .
Sincethe Euler-Lagrangeequation for the Weighted LDDMM only di�ers

from the original equation by the � � gt;1 factor, its implementation is a minor
modi�cation to the basic one, for which we refer to [7] for details.

3.3 Computing the conditional mean via the mode

Another di�cult y is to compute the conditional expectations, which cannot
be done analytically, given the highly nonlinear relation between � n and
I n � g� n . The crudest approximation of the conditional distribution is to
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replaceit by a Dirac measureat its mode, and this is the one we will select
for the time being. Already having J (k) , estimation of the template in k-th
iteration, denote � (k)

n to be the minimizer of

(� n ; K � n) +
1

� 2(k)
kJ (k) � g� 1

� n
� I nk2

2: (38)

The computation of �I (k+1) now becomes:

�I (k+1) (y) =

P N
n=1 I n � g

� ( k )
n

(y)jDg
� ( k )

n
(y)j

P N
n=1 jDg

� ( k )
n

(y)j
: (39)

This also provides an approximation of the Jacobian weight

� (k+1) (y) =
NX

n=1

jDg
� ( k )

n
(y)j: (40)

Concerning the implementation, the computation of � (k)
n is done using the

LDDMM algorithm betweenthe template J (k) and the target I n . Note that
� (k)

n is not neededfor Eq. (39), but only the deformed target I n � g
� ( k )

n
and

the determinant of the Jacobian Dg
� ( k )

n
.

3.4 Template Estimation Algorithm

Now, the template estimation algorithm canbesummarizedasthe following:

Algorithm 3.1 (T emplate estimation) Having the hypertemplateJ0 and
N observationsI 1; I 2; :::; I N , we wish to estimate the template J and noise
variance � 2. Let J (k) denote the estimated template after k iterations with
initial guessJ (0) = J0. Then, the (k + 1)th step is

(i) Map the current estimated template J (k) to I n ; n = 1; 2; :::N using
basic LDDMM, and obtain the deformed targets I n � g

� ( k )
n

and Jacobian de-
terminants of the deformations jDg

� ( k )
n

j.

(ii) Compute the mean image �I (k+1) and the Jacobian weight � (k+1) de-
�ne d by

�I (k+1) (y) =

P N
n=1 I n � g

� ( k )
n

(y)jDg
� ( k )

n
(y)j

P N
n=1 jDg

� ( k )
n

(y)j
; (41)

and

� (k+1) (y) =
NX

n=1

jDg
� ( k )

n
(y)j (42)

17



where g
� ( k )

n
is the optimal di�e omorphic mappingfrom J (k) to I n and jDg

� ( k )
n

(y)j
is the determinant of its Jacobian matrix.

(iii)up date the noise variance � 2

� 2(k+1) =
1

SN

NX

n=1

kJ0 � g� 1
� ( k ) � g� 1

� ( k )
n

� I nk2
2 (43)

(iv) �nd � (k+1) to minimize

(�; K � � ) +
1

� 2(k+1)
k( �I (k+1) � J0 � g� 1

� )
p

� (k+1) k2
2 (44)

using the weighted Euler-Lagrangeequation described previously.
(v) the newly estimated template is J (k+1) = J0 � g� 1

� ( k +1) .

(vi) Stop if J (k) is stable or the number of iterations is larger than a
speci�c number. Else reiterate (i)-(iv).

4 Results and Discussions

Here we present numerical results of template estimation for 3D hippocam-
pus data and 3D cardiac data. All data are binarized segmented images
with grayscale0-255(the imagesare not strictly binary becauseof smooth-
ing and interpolation). For theseexperiments, we have usedK � = �K with
a suitable value of � .

Shown in Figure 2 is an exampleof template estimation of 3D hippocam-
pus data. Panel (a) is the hypertemplate and panel (b)-(i) are observations.
Panel (j) is the estimated template with � = 0:01.

We present sectionsof the 3D data in Figure 3 to show more clearly that
the estimated template adapts to the shapesof observations.

We de�ne the deformation metric, � I (J; I n ) to be square root of the
deformation energy,

R1
0 kv̂k2

V , for the optimal velocity provided by the LD-
DMM algorithm. To show that the estimated template is a considerable
improvement upon the hypertemplate, we list the metrics � I (J0; I n ) and
� I (J (10) ; I n ) in Table 1, which are computed with the same parameters.
This shows a signi�cant metric reduction from the original hypertemplate
to the template estimated after 10 steps.

To assessthe convergenceof the results, we investigate the di�erences
betweenthe estimated templates in successive iterations

kJ (k) � J (k+1) k2
2 =

1
S

SX

s=1

(J (k) (xs) � J (k+1) (xs))2 (45)
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(a) hypertem-
plate J0

(b) I 1 (c) I 2 (d) I 3

(e) I 4 (f ) I 5 (g) I 6

(h) I 7 (i) I 8 (j) I 9

(k) estimated
template J (10)

Figure 2: Estimating the template from 3D hippocampusdata. Panel (a) is
the hypertemplate. Panel (b)-(j) are observations I n ; n = 1; 2; :::; 9. Panel
(k) is the estimated template after 10 iterations. Data courtesy of Biomed-
ical Informatics Research Network.
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(a) hypertem-
plate J0

(b) I 1 (c) I 2 (d) I 3

(e) I 4 (f ) I 5 (g) I 6

(h) I 7 (i) I 8 (j) I 9

(k) estimated
template J (10)

Figure 3: Section view of 3D hippocampus data. Panel (a) is the hyper-
template. Panel (b)-(j) are observations I n ; n = 1; 2; :::; 9. Panel (k) is the
estimated template after 10 iterations. Data courtesy of Biomedical Infor-
matics Research Network.
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� I (�; �) J0 J (10)

I 1 5.2995 4.2773
I 2 7.6836 4.1446
I 3 4.7706 3.7492
I 4 4.9767 2.4993
I 5 4.3480 3.3836
I 6 4.2751 2.6810
I 7 5.3083 3.2349
I 8 5.1540 3.4601
I 9 5.8151 3.6120

Table 1: The metric between
observations and J0; J (10)

iteration k kJ (k+1) � J (k)k2
2 � (k)

0 29.7629 1.0000
1 228.3461 8.5799
2 232.6406 22.1642
3 13.7406 27.1063
4 0.3902 24.5795
5 0.1638 23.8118
6 0.0776 23.6478
7 0.0036 23.5560
8 0.0014 23.5726
9 0.0003 23.5772

Table 2: Di�erences between the es-
timated templates in successive itera-
tions and estimated noisevariances.

where S is the number of voxels and k = 0; 1; :::; 9. The results are shown
in Table 2. We seethat the di�erences between J (k+1) and J (k) decrease
rapidly to a small value (approximately 0) in the �rst 10 iterations. This
indicates the results converge to a stable shape. In Table 2, we also show
the estimated noiselevels, which convergetoo.

Finally we present the result for 3D heart template estimation. Panel
(a) of Figure 4 is the hypertemplate. Panel (b)-(g) are observations I n ; n =
1; 2; :::; 6. Panel (h) is the estimated template with � = 0:0001 at 10th
iteration. Figure 5 is the section view.

In our model, the hypertemplate is consideredas an "ideal" continuous
image with �ne structure, which can be provided by an atlas obtained from
other studies, although we here simply choosea representativ e image in the
population. Actually , asFigure 6 shows, di�eren t hypertemplatesyield close
results, although they have minor di�erence.

� controls how strongly the estimated template depends on the hyper-
template. This has been �xed by hands, but our experiments show a large
rangeof variation without noticeabledi�erence in the �nal result. By taking
small valuesof � , the prior reducesto an almost uniform distribution over
the orbit of the hypertemplate. We indeed took valuesbetween0:0001and
1 and obtained stable results.

Remark : In the above model, we assumethe initial momenta � follows a
prior distribution p� (� ) and estimate the template given observations. We
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(a) hypertem-
plate J0

(b) I 1 (c) I 2 (d) I 3

(e) I 4 (f ) I 5 (g) I 6

(h) estimated
template J (10)

Figure 4: Estimating the template from 3D heart data. Panel (a) is the
hypertemplate. Panel (b)-(g) are observations I n ; n = 1; 2; :::; 6. Panel (h)
is the estimated template after 10 iterations. Data courtesy of Dr. Patrick
Helm, previously of Dept. of Biomedical Engineering, Johns Hopkins Uni-
versity.
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(a) hypertem-
plate J0

(b) I 1 (c) I 2 (d) I 3

(e) I 4 (f ) I 5 (g) I 6

(h) estimated
template J (10)

Figure 5: Section view of 3D heart data. Panel (a) is the hypertemplate.
Panel (b)-(g) are observations I n ; n = 1; 2; :::; 6. Panel (h) is the estimated
template after 10 iterations. Data courtesy of Dr. Patrick Helm, previously
of Dept. of Biomedical Engineering, Johns Hopkins University.
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(a)
hypertempl ate 1

(b) r esult

(c)
hypertempl ate 2

(d) r esult

(e)
hypertempl ate 3

(f ) r esult

(g)
hypertempl ate 4

(h) r esult

Figure 6: For the sameobserved population, we choosedi�eren t imagesas
hypertemplate, � = 0:01. The results only have minor di�erences.
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call this the \full model". We cansimplify this model by neglectingthe prior
and just estimate the maximum likelihood of the template J . The MAEM
algorithm on this setting will lead us to iterate the procedureof

�I (k+1) (y) =

P N
n=1 I n � g

� ( k )
n

(y)jdyg
� ( k )

n
j

P N
n=1 jdyg

� ( k )
n

j
: (46)

The resulting algorithm is similar to [8]. The di�erence is that the model
in [8] warps the observations to match the template and places the white
noisebetweenthe deformedtarget and the template, which doesnot induce
a jacobian in the averaging process. However, for a generative model, the
logical progressionis from template to target. From this point of view, [8]
implies an observation noise that is proportional to the inversejacobian of
the deformation, which is hard to justify .

Figure 7 and Figure 8 comparethe full model and the simpli�ed model.
The simpli�ed model performed relatively poorly compared with the full
model that used the prior. This discrepancycomesfrom the fact that we
simultaneously estimate the template and the noisevariance. This estimated
value of the noisevariance allows for somedi�erence betweenthe deformed
template and the targets, yielding fuzzy boundariesin the simpli�ed model.
If we set the noise variance to a small number, we may obtain sharper
boundariesusing the simpli�ed model, but this would estimate a template
essentially as a metric average(a Fr�echet mean) of the targets and would
not be consistent with our generative model.

(a) J f ull (b) J simplif ied

Figure 7: The template estimation results of full model and simpli�ed model
for hippocampus data. Data courtesy of Biomedical Informatics Research
Network.

25



(a) J f ull (b) J simplif ied

Figure 8: The template estimation results of full model and simpli�ed model
for cardiac data. Data courtesy of Dr. Patrick Helm, previously of Dept. of
Biomedical Engineering, Johns Hopkins University.

5 Conclusion

In conclusion, we have presented in this paper a Bayesian model for tem-
plate estimation in CA. By the momentum conservation law, the spaceof
initial momenta is a linear spacewhere statistical analysis can be applied.
It is assumedthat observed images I 1; I 2; :::; I N are generated by shoot-
ing the template J0 through gaussian-distributed random initial momenta
� 1; � 2; :::; � N . The template J is modeled as a deformation from a given hy-
pertemplate J0 with initial momentum � , which has a gaussianprior. This
allows us to apply an generalizedEM algorithm MAEM to computing the
Bayesian estimation of the initial momentum � , where the conditional ex-
pectation of the EM is approached by a Dirac measure,so that onecan take
the advantage of the LDDMM algorithm. The MAEM procedure �nally
leadsto an image mapping problem from J0 to �I with Jacobian weight � in
the energy term, which is solved by the weighted Euler-LagrangeEquation.
In particular, we apply this method to template estimation for hippocam-
pus and cardiac images. We show that the estimated template is \closer" to
observations compared to the hypertemplate, and the di�erences between
the estimated templates in successive iterations decreaseto almost 0, which
indicates the convergenceof the algorithm. We also show the results are
stable with di�eren t hypertemplates.
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