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Abstract

Templatesplay a fundamenrtal role in Computational Anatomy. In
this paper, we presert a Bayesianmodel for template estimation. It is
assumedthat obsenedimagesli;l,;:::;In are generatedby shooting
the template J through Gaussiandistributed random initial momenta

1; 2;:% N - Thetemplate J is modeledasa deformation from a given
hypertemplate Jo with initial momertum , which hasa gaussianprior.
We apply a mode approximation of the EM (MAEM) procedure,where

the conditional expectation is replaced by the Dirac measure. This



leadsus to an image matching problem with a Jacobian weight term,
and we solveit by deriving the weighted Euler-Lagrangeequation. The
results of template estimation for hippocampus and cardiac data are
preseried.

Keyw ords: template estimation, computational anatomy, Bayesian,
weighted Euler-Lagrange equation

1 Intro duction

Computational Anatomy (CA) is the mathematical study of variability of
anatomical and biological shapes. The framework has been pioneered by
Grenander [12] through the notion of deformable templates. Given a tem-
plate Imp, the group of di eomorphisms G acts on it to generatean orbit
I = Glemp, a whole family of new objects with similar structure as | emp.
Hence,one can model elemerts in the orbit | via di eomorphic transforma-
tions.

Templatesplay animportant role in CA. They are usually usedto gener-
ate digital anatomical atlasesand act as a referencewhen computing shape
variability. Often, templates have beenchosento be manually selected\t yp-
ical" obsened images. It is however preferable to build a template based
on statistical properties of the obsened population. There hasbeenby now
seweral publications addressingthe issueof shape averaging over a dataset.
In this cortext, the averageis based on metric properties of the spaceof
shapes; assuminga distance in shape spaceis given, the average of a set
of shapesis a minimizer of the sum of square distancesto eat elemern of
the set (Fredet or Karcher mean). When the shape spaceis modeled as
a Riemannian manifold, a local minimum of this sum of squareddistances
must be suc that the sum of initial velocities of the gealesicsbetweenthe
averageand ead of the elemeris in the set vanishes. This leadsto the fol-
lowing averaging procedure (sometimescalled procrustean averaging) which
consistsin (i)starting with an initial guessof the average, (i) computing all
the gealesicsbetweenthis current averageand ead elemert in the set of
shapes, (iii) averaging their initial velocities and (iv) displacing the current
averageto the endpoint of the gedlesic starting with the initial velocity,
this being iterated until corvergence[13, 20, 10, 16, 21]. A dierent varia-
tional de nition of the averagehasbeenprovided in [8, 5, 4]. In the presern
work, however, we do not build the template as a metric average, but as
the certral componernt of a generative statistical model for the anatomy.
This is reminiscert of the construction dewveloped in [1] for linear models of



deformations, and in [11] for thin-plate models of points set.

In our application of Grenander's pattern theory, anatomical shapes
are modeled as an orbit under the action of the group of di eomorphisms.
Becauseof this, di eomorphisms play an important role in our statistical
model. The nonlinear spaceof di eomorphisms can be studied as an in -
nite dimensional Riemannian manifold, on which, with a suitable choice of
metric, gealesic equations are described by a momentum conservation law
[2, 3,15, 17]. In our cortext, the methodology of geodesicshating [23, 19 re-
lies on this consenation law to derive statistical models on di eomorphisms
and deformable objects. Through the geadesic equations, the ow at any
point along the gealesicis completely determined (once a template is xed)
by the momentum at the origin. The initial momertum therefore provides
a linear represenation of the nonlinear di eomorphic shape spacein a local
chart around the template, to which linear statistical analysis can be ap-
plied. Note that metric averaging can be reconnectedto geadesic shooting
[23, 14]. In this case,the algorithm is: rst, compute the geadesicfrom a
given template 1o to sewral target imagesand obtain the initial momena
of eath transformations; second,compute the mean initial momertum m;
then, shoot 1o with initial momertum m to get a new image | ; iterate this
procedure. This approac was usedin landmark matching [23], 3D average
digital atlas construction [6] and quartifying variability in heart geometry
[14].

In this paper, we introduce a random statistical model on the initial
momertum to represen random deformations of a template. The generative
model we use combines this deformation with someobsenation noise. We
will then dewelop a strategy to estimate the template from obsenations,
basedon the \Mo de Approximation of the EM algorithm" (MAEM), under
a Bayesian framework.

The paper is organized as follows. We rst provide some badkground
material and notation related to di eomorphisms and their usein compu-
tational anatomy. We then discusstemplate estimation and detail the sta-
tistical model and the implementation of the MAEM procedure. This will
require in particular introducing an extension of the LDDMM algorithm
[7, 18] to the casewherethe data attachment term hasa nonstationary spa-
tial weight. We nally provide experimenrtal results, with a comparisonwith
a simpli ed, non-bayesian, approad.



1.1 Background

Let the badkground space RY be a boundeddomain on which the images
arede ned. To atemplate | emp correspondsthe orbit | = flemp g 1:92

Gg under the group of di eormorphisms G. For any two anatomical images
J;1 2 |, there exists a set of di eomorphisms (denote g as an arbitrary

elemernt in the set) that registersthe givenimages:| = J g . Following
[9, 22], when we de ne the orbit | , we restrict to di eomorphisms that can
be generatedas ows g;t 2 [0; 1] cortrolled by a velocity eld v, with the
relation

@y

@(X) = vi(a(x)); x2 ; t2[0;1] (1)

with initial condition go = id. To ensurethat the ODEs generate dif-
feomorphisms, the vector elds are constrained to be su cien tly smooth
[9, 22]. More speci cally, they are assumedto belongto (V;k ky), aHilbert
spacewith squared norm de ned as kvky = (Av;v) through an operator
A .V 7'V ,whereV s the dual spaceof V. For v 2 V, Av can be
consideredas a linear form on V (a mapping from V to R) through the
identi cation (Av;w) = hv;wiy, where (Av;w) is the standard notation for
a linear form Av applied to w. Interpreting kvk\z, = (Av;v) as an energy
Av will be called the momentum assaiated to the velocity v. We assume
that V can be enbeddedin a spaceof smooth functions, which makesit a
reproducing kernel Hilb ert spacewith kernelK = A 1:V 71V,
The gedadesicsin the group of di eomorphisms are time-dependen dif-
feomorphismst 7! g; de ned by (1) such that the integrated energy
Z,
kvi kg dt )
0
is minimal with xed boundary conditions go and g;. The image matching
problem betweenJ and | is formalized asthe seard for the optimal gealesic
starting at go = id suchthat | =J ¢ 1. From this is derived the inexact
matching problem, which consistsin nding a time-dependert vector eld
Vi solution of the problem
Zy
¢ = argmin kvekZ dt + izk\] gl 1K : (3)
vigr=Vvi(at) 0
Geadesicsare characterized by the following Euler equation (sometimes
called EPDi [15]), which can be interpreted asa consenation equation for
the momertum Av [2, 3]. The equation is

@\v¢
@

+ (Dvt) Av; + div(vi)Avi + D (Av)v; = O (4)
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Basedon this, Beget al. [7] developedthe LDDMM algorithm for image
matching. Solutions of LDDMM are gealesicsconnectinggg = id and g; for
the metric de ned by (2) on groups of di eomorphisms, hencethey satisfy
the EPDi equation [19].

The consenation of momertum is described as follows. Let wg be a
vector eld, andw; = D g (g 1)wo(gt 1) bethe transported vector eld along
the gealesic. Then, if Av; satis es Eq. (4), we have:

g(Avt;wt) -0 5)

This implies Av; = (Dg, 1) Avo(g 1)jDg, %j;t 2 [0;1], meaning that the
gealesicewolution in the orbit J g, ! dependsonly onJ and the momertum
at time 0. The solution of (3) satis es this property in an even simpler form,
which explicitly provides the momertum Av; in function of the deformed
imagesand the di eomorphism g; [7, 18. Moreover, Eq. (5) can be shown
to have singular solutions that propagate over time. In uid medanics,
EPDi is usedto model the propagation of waves on shallov water. In
our cortext, it provides a very simple form to nitely generate models of
deformation (seesection 3.2).

Hence, the nonlinear di eomorphic shapes can be represened by the
initial momerta which lie on a linear space(the dual of V). This provides
a powerful vehicle for statistical analysis of shapes. In this paper, we in-
vestigate a statistical model of deformable template estimation using this

property.

2 Metho dology of Template Estimation

2.1 Statistical model for the anatomy

In addition to the consenation of momertum discussedin the previous
section, solutions of (3) have also their energy consened (since they are
gedesics): kvikZ is independert of time. Becauseof this, problem (3) is
equivalent to

¢ = argmin kvok\2,+i2k\] gl 1K : (6)
vigr= Ve (o)

where vg is the initial velocity. So the minimization is now restricted to
time-dependert vector elds v that satisfy (4). The minimized expression
may formally be interpreted as a joint log-likelihood for the initial velocity



Vo and obsened image | in which vg would be a random eld (with V as
a reproducing space)generating, via (4), a di eomorphism g;, and | would
be obtained from the deformedtemplate by the addition of a white noise.

This is essetially the model we adopt in this paper, under a discrete
form that will be more amenableto rigorous computation. Recall that we
have de ned the duality operator A onV asassaiating to v in V the linear
form Av 2 V dened by (Av;w) = hv;wiy. By the Rieszrepresenation
theorem, A is invertible with inverseA ! = K. The discretization will be
done on the momertum, m = Av, instead of the velocity eld v.

Note that the setsV and V are isometric if V is equipped with the
product m; miy = (m; Km) for m;m 2 V . Therefore, the norm of initial
velocity is equal to the norm of corresponding initial momertum, that is,
for mg = Avg, we have

(Avo; Vo) = kvokd = kmgk3 = (mo; K mo): (7)

Formally again, this may be interpreted as the log-likelihood of a Gaus-
siandistribution onV with covarianceoperator A = K 1, characterized by
the property that, for any w 2 V, (mo; w) is a certered Gaussiandistribution
with variance

Ef(mo;w)%g= (Aw;w) = kwkZ : (8)

We now discussa discrete version of this random eld. For x;a 2 RY,
denotea  the linear form w 7! (a  ;w) := a'w(x). Noting that
K(a )2V is,bydenition, avector eld onV that dependslinearly on
a, we make the abuseof notation

K(a x)(y) = K(y;x)a

where K (y;x) is a d by d matrix (the reproducing kernel of V). It can be
cheded that K (x;y) = K (y;x)" and

K (;y)a;K (;2)biyv = a'K (y;z)b:
We model the random momerntum  as a sum of sudh measures
= 8 Xi )
where X1;Xp;::5;Xs 2 form a set of xed (deterministic) points (for ex-
ample, the grid supporting the image discretization) and a = (az;ap;:::;as)

are random variables such that a N (0; ) in RS9, We want to choose
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consisterly with our formal interpretation of Eq.(7). For this, we can
compute, for w2 V

x® T
(w) = alw(x) (10)
i=1
which is a Gaussianwith mean 0 and variance

w(xi)T i w(xj)
ihj =1

where j is the d by d matrix E(aiajT). We want to compare this to
equation (8), and in particular ensurethat both expressionscoincide when

kwkZ = bTK (xk; xk)b yielding the constraint: for all k
3
K (Xk; Xk) = K (X5 xi) i K (X5 Xk):
i =1

Dene Kj = K(xj;x;) and assumethat the block matrix K = (Kj ) is
invertible. Then the equation above is equivalert to = K 1, which com-

The probability density function (p.d.f) of a is given by

p(a) = Zle &' tac Zle ze' Ka (11)
o P—
whereZ = (2 )S92= detK. P
It is interesting to notice that we have, with = iszl a Xi s
x
(;K) = @  x KCx)g) (12)
i;j =1
= aiTK(xi;xj)aj
i;j =1
= a'Ka: (13)
Sothe p.d.f of canbe written as
Lotk
p() = Ze ¥ 1y () (14)



where 1 represens the indicator function and V (x) = f = 2, &
x;;a1;ii;as 2 Rdg. Sincein the in nite dimensional spaceV , our model
is a singular Gaussiandistribution supported by the nite dimensionalspace
V (x). When restricted on this space,it is cortinuous with respect to the
Lebesguemeasurewith a density provided by Eq. (14).

This describesthe deformation part of the model, represened asthe dis-
tribution of the initial momertum . We can solve (4) with initial condition
Avg = fromtime t = Oto t = 1 and integrate the velocity eld t 7! v; to
obtain a di eomorphism, that we shall denoteg , at time t = 1. Although
we will not usethis fact in our numerical methods, it is important to notice
that g canbe obtained from (given by Eq. (9)) via the solution of a sys-
tem of ordinary di erential equationsto which Eq. (4) reduces. It can be
shown that this system has solutions over all times, soour model is theoret-
ically consistert. With this model, the imageJ g 1! is therefore a random
deformation of the template (since is random). We assumethat the ob-
senedimagel obtained from the deformedtemplate aftg,r discretization and
addition of noise. More precisely denoting[J g ]=" 3, xJ g 1 the
obsenation | is a discrete image given by

l=[0 g +WwW W N(©O; 2d: (15)

The complete processis thus via the pair ( ;1). Our goal is, given

the template J and the noisevariance 2.

2.2 Prior distribution on the template

We want to constrain the virtually in nite dimensionaltemplate estimation
problem within a Bayesianstrategy. We will introduce for this a hypertem-
plate, Jo, and describe J asa random deformation of Jo. The hypertemplate
is given, usually provided by an anatomical atlas. The template J is mod-
eledasJ = Jo g !with the initial momertum. We model asa discrete
momertum like in the previous section, with distribution

()= 2e 30K D1y () (16)

Z
for areproducing kernel K . In our experiments, we madethe simple choice
K = K , for someregularization parameter > 0.
The relations betweenJg,J and I 1;15;:::; Iy is illustrated in Figure 1.
Remark : In this model, Jo and J are cortinuous. Jg is a given cortinuous
function dened on 2 RY, although it may be nitely generated (using
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Figure 1. The template J is to be estimated given hypertemplate Jo and

obsened images|1;1,;::;In. We model the template asJ = Jg g 1,
where is the random initial momertum. In the following EM algorithm,
is computed iterativ ely, with random initial momernta 1; »;::; n being

hidden variables.

a nite elemen represenation, for example). Obsenations I1;:::;; 1N are
discrete images. From theseimages,we will estimate the initial momertum
, and further get the cortinuous template J = Jo g . For simplicity,
we will still denote,with a little abuse,J g nl to refer to its discretization
B gl
Remark : The kernelsK and K are important componerts of the model,
and can be consideredas in nite dimensional parameters. While not an
impossibletask, trying to estimate them would signi cantly complicate our
procedure. Consequetly, the kernels have been selecteda priori, and left
xed during the estimation procedure.

3 Template Estimation with the MAEM Algorithm

3.1 The complete-data log-lik eliho od
We here describe the estimation of parameters (which uniquely describes
goal is to compute argmax. 2p ( jl). Welet = f 4; 21 ng denote

the sequenceof hidden initial momerta.
To use the EM algorithm we rst write down the complete-data log-



likelihood. The joint likelihood of the model given the obsenations is

pC; ;) = ()pd; j)
1 A

e 1
= —e 2 _
z

n=1

1

(K e 3(nK n) Fzklog ' g ! Ink3 }Slog 2 17)

P
wherekl  193=" 2, (1(x) 19x))2
The EM algorithm generatesa sequence( (); 2() according to the
transition (E ). 2w is the expectation under the assumptionthat the true

parametersare () and 2 )

( (b 20y = argmaxE . w0 (logp (1 )il):
-2

The maximization is decomposedinto two stepsimplying a generalized
EM algorithm:

2D = argmaxE . a0 (logp (5 15 )il)
! :

(k+1)

argmaxE (K): 2(k+1) (|ng (; l; )JI)

De ne the complete-datalog-likelihood Q(; 2 ); 2(K):1) asthe right
hand side of the previous equation which must be maximized alternativ ely
in and 2

Q(; 2J'n(k); 20 1)

1
=E w §(§K )
X 1 X N 0
S(niKon) 55 ko gl gl Ik Tslog 21 +C
n=1 n=1
1 -
= E(’ K ) (18)
1 X n 0 N
ﬁ E (k) kJO g 1 gnl Ink%ln TSlog 2+C
n=1

where S is the number of grids (or pixels, voxels) and C and C are expres-
sionsthat do not dependon or 2. The maximization M-step at transition
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step k yields

1 X n 0
2(k+1) —— Ew klo g 9! 1Ky (19)

SN =1 n

n
(D) = argmin (; K ) (20)
1 X 1 1 T
kD) Ew ko ¢ g, Inkiln
n=1

Remark: Onecan nd that this framework nally coincideswith the Max-
imum a Posterior (MAP) estimation. However, MAP and EM rely on di er-

ent statistical hypotheses.The former esettially consideringthe unobsened
deformation as a parameter, and the latter as a hidden variable, which is
more suitable here sincethe deformation dependson the subject. Sowe use
a generalEM algorithm instead of MAP estimation.

3.2 Maximization via the Euler Equation with Jacobian weight

This is the EM framework for template estimation. Now, the main di cult y
of the algorithm is the minimization in (20). To derive the Euler -Lagrange
Equation for the minimizer, we usethe integral formula for the norm, sowe
can avoid thg interpolation problem assaiated with discrete sum de nition
ki 1% =" 2, (I(xi)) 1%x;))? which correspondsto signal plus additive
white noise. This makes the change of variable formula straightforward
and links us to the Euler-Lagrange equations on vector elds which have
been previously published. As well, our implementation is a discretization
of that cortinuum equation. Note that one can provide a fully discrete
analysis of the problem (relying on a represeration of the images using
linear interpolations asin [1], where both imagesand deformationsare linear
combinations of the kernelscertered at the landmark points. ).

For the variation, let V be the reproducing kernel Hilb ert spaceassai-
ated to the prior kernel K . Sincethe energyis consened along gealesics,
we have

Z,
(; K )= kvwkd = kvwkd dt (21)
0

wherevp = K is the initial velocity. This connectsour optimization in
the MAEM algorithm to the original LDDMM Euler-Lagrange equation of

[71.
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If g is a time-dependert ow of di eomorphisms, we let gst : 7!
denote the composition gs¢(y) = g (gs) *(y), meaning position at time t
of a particle that is at position y at time s. Let Dgst denote the Jacobian
of mapping gs:t, the matrix composedwith the spacederivatives. We add a
superscript v to indicate that g; = g/ is the ow arising from (1). We state
how perturbations of the vector eld a ect the variation of the mapping in
the following lemma.

Lemma 3.1 The variation of mapping g¢; whenv 2 L2([0;1];V ) is per-
turbed along h 2 L2([0;1];V ) is given by

Z S
= Dg\s/;t . (Dg\s/;u) 1hu g\s/;udU: (22)

v+ h \Y;
. gs't gs‘t
vV - y ’
@gy = lim ==t

Refer to [7] for proof.
Then the maximization is reducedto what we term the weightel-LDDMM
image matching problem.

Prop osition 3.1 (i) (Formalization to a weightel-LDDMM problem) At
stagek + 1 de ne the following ancillary average of the conditional mean:

P . .
|82 (g = E‘zlpE wiln 9.(iDg, Wi Ing
N1 E wfiDg, ()i Ing

(23)

Then the M-step of the genealized EM algorithm reduces to the weightel-
LDDMM algorithm:

n

k1) = argmin (; K )
X 1 1 41 T
WE « ko 0O g, Inks In
" Z 0
. 1
=argmin (; K )+ a3 g fy) 1%V y)? D (ydy
(24)
with the Jacobian weight
(k+1) X - -
= E wfbg, ¥ Ing (25)

n=1

12



(i) (The weighte Euler-Lagrange Equation) Given a continuously dif-
ferentiable template image Jo, a targetimage | and Jacobian weight , the
optimal veleity eld ¢ 2 L2[(0;1);V ] with 99 = K ~ for inexact matching
of Jop and | de ned as

nZi 1 2 o
argmin kvikG dt+ = (1(y) Jo g *(y)* (y)dy (26)
Vigr= Vi (Qt) 0

satis es the Euler-Lagrange equation
2. :
20 K —iDgajr HtO(HtO Htl) 01 =0 (27)
whee H? = Jo gro, HE =1 g1

The crucial idea here is that we are linked bad to the basic LDDMM
image matching problem of Beg ( = 0), with the Jacobian playing a role.
Pro of: ()Let y= g nl(x), we have

ko gt gl 1.k

(Jo g gl 1a(x)2dx
z

(Jo 9 ') In 9.()%Dg,(idy (28)

13



With | *1) asde ned in Eq. 23, we have, for all y 2

X
E wf(@o g Xy) In g,()2%Dg,()i Ing

n=1

X\I 1 k+1

= E(k)f(JO g (y) I( )(y)

n=1

+1 & (y)y 1y g, (y)ADg, ()i 1ng

X

= E wf(Jo giy) 1% (y)3Dg, ()i

n=1

+(1 8D (y) 1, g, ())3Dg, (V)i
+2(Jo g My) 1D (y) (1 & (y)
In 9,())IDg, ()i Ing

A
=@ E wf@o g Xy) 1%V (y)%Dg, ()i

n=1

+(1 & (y)  1h g, (Y)ZDY, ()i 1ng

X
= @o gy 1¥Yy)N? E wfiDg,y)i Iag
n=1

X
+  E wf( D@y 1n g,())3%Dg, ()i Ing:

n=1
In (a), the fact that the crossitem

X 1
E wf(Jo g *(y)

n=1

LD ) D y) 1h g, ())iDg, i 1ng

X
= (Jo g iy) 1%D(y) E wf(®V(y)
n=1

In 9,(¥)iDg,.(y)j Ihg=0

comesstraightforward from the de nition of | K*1 (y).

(29)

Since the secondterm of EQq.(29) does not depend on , substituting

Eq. (29) into Eq. (20), W(—:-Zseethat &*+1) must minimize

(K )% e (904 Jo g io)? < (yay

14
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with the Jacobian weight

X
Dy)= E wfiDg,y)i Ing (31)

n=1

. With the optimal &*1)  we can compute g «.1) by gedalesic shooting
(Equation (4)), and further obtain the newly estimated template J (k*1) =
Jo O (Ll) . This givesthe rst part of the proof.

(ilThe proof of the secondhalf follows the derivation in [7]. Supposethe
velocity v 2 L2([0; 1];V ) is perturb ed along the direction h 2 L2[(0;1);V ]
by an amount. The Géateaux variation @QE(v) of the energy function is
expressedn term of the Frechet derivativer (E

E(v+ h) E(V) _ 1

@QE(v) = Ii'm0 hr yE¢; hiiy dt: (32)
: 0
R
The variation of E1(v) = 01 kvtk\z, dt is given by
Z,
@E1(v) = 2 hv; hiiy dt: (33)
0

The secondpart of the energyis
Z

Go g '(y) 1(y)? (ydy

Ea(v) = —
1 .
—MJo G0 1); Jo g0 lipe: (34)

The variation of Ex(v) is

2 .
@E2(v) = 5NJo g0 1); DJo Gr,0@00i 2

5D Z E
=@ — (Jo g0 1); DJo o Doo (Do) *he guedt
0
y 2 ‘1 i
=® = NI go 1); DUo gro)(Dgry) *he Qgrii 20t
0
(35)

with (a) derived straightly from Lemma 3.1 and (b) from the formulation
D(Jo 010) = DJo 01.0D010. Changing variable with z = gi.(y) i.e.

15



O:1(z) = y, onecan obtain jdg.1jdz = dy. The chain rule givesgi.o 01 =
geo. In addition, D(I @)= (r (I @)". With thesesubstitutions, we get

Z
2t :
@Ez(v) = —  hDg1j(Jo %o | %1) %1:DJo Gro)hiip2dt
2’
= — OhJ'DQJt;ljr (Jo Gto)(Jo Gto | Or1)  Geashiipedt
Z,

2 .

K —iDgar (Jo %o0)(Jo Gto | Or1)  Ora hidy dt
2, )

K SjDggajr HXH? HY) g ;hiiy dt:
0

Combining the two parts of energyfunctional, the gradient is thus
2. ,
(r vEt)v =2v¢ K —jDgajr HtO(HtO Htl) O (36)

where the subscript V in (r yE{)v is to clarify that the gradiert is in the
spacelL ?([0;1];V ). The optimizing velocity elds satisfy the Euler-Lagrange
equation

ZlD 2 E
rRE(@) = 20 K 5iDgair HYH? HY) g she dt=0

0
(37)

Sinceh is arbitrary in L2([0;1];V ) we get Eq.(27).

Equation (36) provides the gradient ow that minimizes (26). Recall
that this problem must be solved to obtain the next deformation of the
hypertemplate: given the solution ¢, compute the initial momertum ~ =
(K ) 9, the optimal di eomorphism g and the newtemplate J = Jy g, .

Sincethe Euler-Lagrangeequationfor the Weighted LDDMM only di ers
from the original equationby the g1 factor, its implementation is a minor
modi cation to the basic one, for which we refer to [7] for details.

3.3 Computing the conditional mean via the mode

Another di cult y is to compute the conditional expectations, which cannot
be done analytically, given the highly nonlinear relation between , and
In g,. The crudest approximation of the conditional distribution is to
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replaceit by a Dirac measureat its mode, and this is the one we will select

for the time being. Already having J (), estimation of the template in k-th

iteration, denote ﬁk) to be the minimizer of

1
(K )+ z(k)kJ(k) gnl Ik (38)

The computation of | ¢*1) now becomes:
P . .
h=1 In 90D WM

1D (y) = PN— . (39)
h=11D g (o (V)]
This also provides an approximation of the Jacobian weight
(k+1) X ;
()= iDg i (40)

n=1

Concerning the implemenrtation, the computation of ,(1") is done using the
LDDMM algorithm betweenthe template J(K) and the target |,,. Note that
ﬁk) is not neededfor Eq. (39), but only the deformedtarget I, g «) and
the determinant of the JacobianDg CE "

3.4 Template Estimation Algorithm
Now, the template estimation algorithm canbe summarizedasthe following:

Algorithm 3.1 (T emplate estimation) Having the hypertemplateJy and
N observationsl1;ly;:::; 1N, we wish to estimate the template J and noise
variance 2. Let J&) denotethe estimated template after k iterations with
initial guessJ(©@ = Jg. Then, the (k + 1)th stepis

() Map the current estimated template JX) to I,,;n = 1;2;::N using
basic LDDMM, and obtain the deformed targetsl,, g « and Jacobian de-
terminants of the deformations jDg E]k)j. ’

(i) Compute the mean image | (**1) and the Jacobian weight &+ de-
ned by

Py _ .
n=1 ILn 9 a0 (Y)IDG to (¥)j

| 64D (y) = P . :
N, iDg o ()

(41)

and

X!
Dy)= iDgw®i (42)
n=1
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wher g (k) is the optimal di e omorphic mappingfrom J®) to |, andjDg (k)(y)J

is the determlnant of its Jacobian matrix.
(iii)up date the noise variance 2

1 X

D) = ko g4 G4 Ink3 (43)

n=1
(iv) nd &*D to minimize

1

p___
T2k+D) e kD3 g ) (DG (44)

(; K )+

using the weightel Euler-Lagrange equation descrited previously.

(v) the newly estimated templateis J&*V = Jg g &, -

(vi) Stop if J&) is stable or the number of iterations is larger than a
speci ¢ numter. Else reiterate (i)-(iv).

4 Results and Discussions

Here we presert numerical results of template estimation for 3D hippocam-
pus data and 3D cardiac data. All data are binarized segmened images
with grayscale0-255 (the imagesare not strictly binary becauseof smooth-
ing and interpolation). For theseexperimerts, we have usedK = K with
a suitable value of

Shown in Figure 2 is an exampleof template estimation of 3D hippocam-
pus data. Panel (a) is the hypertemplate and panel (b)-(i) are obsenations.
Panel (j) is the estimated template with = 0:01.

We presen sectionsof the 3D data in Figure 3 to shav more clearly that
the estimated template adapts to the shapesof obsenations.

We de ne the dq{ormatlon metric, | (J;In) to be squareroot of the
deformation energy kOk\z,, for the optimal velocity provided by the LD-
DMM algorithm. To ShON that the estimated template is a considerable
improvemert upon the hypertemplate, we list the metrics | (Jo;1n) and

1 (319 1) in Table 1, which are computed with the same parameters.
This shaws a signi cant metric reduction from the original hypertemplate
to the template estimated after 10 steps.

To assesghe corvergenceof the results, we investigate the di erences
betweenthe estimated templates in successie iterations
16

WO JEDIg= =7 AWk 36D (xg)? (45)

s=1
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Figure 2: Estimating the template from 3D hippocampusdata. Panel (a) is
the hypertemplate. Panel (b)-(j) are obsenations I ,;n = 1;2;:::;9. Panel
(k) is the estimated template after 10 iterations. Data courtesy of Biomed-
ical Informatics Researth Network.
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Figure 3: Section view of 3D hippocampusdata. Panel (a) is the hyper-
template. Panel (b)-(j) are obsenations I5;n = 1;2;:::;9. Panel (k) is the
estimated template after 10 iterations. Data courtesy of Biomedical Infor-
matics Researth Network.



iteration k | kJ®*D  3(OKZ (k)
()| o | 30O 0 29.7629 1.0000
1 | 5.2995] 4.2773 1 228.3461 8.5799
I, |7.6836| 4.1446 2 232.6406 | 22.1642
I3 | 4.7706| 3.7492 3 13.7406 27.1063
|, | 4.9767| 2.4993 4 0.3902 24.5795
ls | 4.3480| 3.3836 5 0.1638 23.8118
le | 4.2751| 2.6810 6 0.0776 23.6478
I, | 5.3083| 3.2349 7 0.0036 23.5560
lg | 5.1540| 3.4601 8 0.0014 23.5726
lg | 5.8151| 3.6120 9 0.0003 23.5772

Table 1: The metric between Table 2: Dierences between the es-
obsenations and Jo; J 10 timated templates in successie itera-
tions and estimated noisevariances.

where S is the number of voxels and k = 0; 1;:::;9. The results are shovn
in Table 2. We seethat the di erences betweenJ®*D) and J() decrease
rapidly to a small value (approximately 0) in the rst 10 iterations. This
indicates the results cornvergeto a stable shape. In Table 2, we also show
the estimated noiselevels, which corvergetoo.

Finally we present the result for 3D heart template estimation. Panel
(a) of Figure 4 is the hypertemplate. Panel (b)-(g) are obsenations | ,;n =
1;2;::;;6. Panel (h) is the estimated template with = 0:0001 at 10th
iteration. Figure 5 is the section view.

In our model, the hypertemplate is consideredas an "ideal" continuous
imagewith ne structure, which can be provided by an atlas obtained from
other studies, although we here simply choosea represenativ e imagein the
population. Actually, asFigure 6 shaws, di erent hypertemplatesyield close
results, although they have minor di erence.

cortrols how strongly the estimated template dependson the hyper-
template. This has been xed by hands, but our experiments show a large
range of variation without noticeabledi erence in the nal result. By taking
small valuesof , the prior reducesto an almost uniform distribution over
the orbit of the hypertemplate. We indeed took values between0:0001 and
1 and obtained stable results.

Remark : In the above model, we assumethe initial momerta follows a
prior distribution p ( ) and estimate the template given obsenations. We
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Figure 4: Estimating the template from 3D heart data. Panel (a) is the
hypertemplate. Panel (b)-(g) are ob22nations | ,;n = 1;2;:::;6. Panel (h)
is the estimated template after 10 iterations. Data courtesy of Dr. Patrick
Helm, previously of Dept. of Biomedical Engineering, Johns Hopkins Uni-

versity.
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Figure 5: Section view of 3D heart data. Panel (a) is the hypertemplate.
Panel (b)-(g) are obsenations I ,;n = 1;2;:::;6. Panel (h) is the estimated
template after 10 iterations. Data cdiitesy of Dr. Patrick Helm, previously
of Dept. of Biomedical Engineering, Johns Hopkins University.
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(9) (h) result
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Figure 6: For the sameobsened population, we choosedi erent imagesas
hypertemplate, = 0:01. The results only have minor di erences.
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call this the \full model". We cansimplify this model by neglectingthe prior
and just estimate the maximum likelihood of the template J. The MAEM
algorithm on this setting will lead us to iterate the procedure of

PN . :
n=t ln 9 oIy o]

i N, jdyg ]

| &) (y) = (46)

The resulting algorithm is similar to [8]. The di erence is that the model
in [8] warps the obsenations to match the template and placesthe white
noise betweenthe deformedtarget and the template, which doesnot induce
a jacobian in the averaging process. Howewer, for a generative model, the
logical progressionis from template to target. From this point of view, [8]
implies an obsenation noisethat is proportional to the inversejacobian of
the deformation, which is hard to justify.

Figure 7 and Figure 8 comparethe full model and the simpli ed model.
The simplied model performed relatively poorly compared with the full
model that usedthe prior. This discrepancy comesfrom the fact that we
simultaneously estimate the template and the noisevariance. This estimated
value of the noisevariance allows for somedi erence betweenthe deformed
template and the targets, yielding fuzzy boundariesin the simpli ed model.
If we set the noise variance to a small number, we may obtain sharper
boundaries using the simpli ed model, but this would estimate a template
essetially as a metric average (a Frechet mean) of the targets and would
not be consistert with our generative model.

(a) qull (b) Jsimplif ied

Figure 7: The template estimation results of full model and simpli ed model
for hippocampusdata. Data courtesy of Biomedical Informatics Researt
Network.
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(a) Jf ull (b) J simplif  ied

Figure 8: The template estimation results of full model and simpli ed model
for cardiac data. Data courtesy of Dr. Patrick Helm, previously of Dept. of
Biomedical Engineering, Johns Hopkins University.

5 Conclusion

In conclusion, we have preseried in this paper a Bayesian model for tem-
plate estimation in CA. By the momertum consenation law, the spaceof
initial momerta is a linear spacewhere statistical analysis can be applied.
It is assumedthat obsened images|i;ly;::;;In are generated by shoot-
ing the template Jo through gaussian-distributed random initial momernta
1; 2;:% N The template J is modeled as a deformation from a given hy-
pertemplate Jg with initial momertum , which hasa gaussianprior. This
allows us to apply an generalizedEM algorithm MAEM to computing the
Bayesian estimation of the initial momertum , where the conditional ex-
pectation of the EM is approaded by a Dirac measure,sothat onecantake
the advantage of the LDDMM algorithm. The MAEM procedure nally

leadsto an image mapping problem from Jg to | with Jacobianweight  in
the energyterm, which is solved by the weighted Euler-Lagrange Equation.
In particular, we apply this method to template estimation for hippocam-
pus and cardiac images. We shaw that the estimated template is \closer" to
obsenations comparedto the hypertemplate, and the di erences between
the estimated templates in successie iterations decreaseio almost 0, which
indicates the corvergenceof the algorithm. We also show the results are
stable with di erent hypertemplates.
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