Partiel (durée 3h) Jeudi 6 Novembre 2008

Les notes de cours ne sont pas autorisées

Le partiel n'est pas long. Les réponses aux questions doivent être rédigées avec soin.

Exercice 1. Soit $f:[0,1] \to \mathbb{R}$ une fonction positive, monotone.

- (1) Montrer que f est borelienne.
- (2) Quelle est la limite de la suite de $\int_0^1 f(x^n) dx$ lorsque $n \to \infty$?
- (3) Etendre le résultat pour μ mesure de Radon sur \mathbb{R} .

Exercice 2.

- (1) Enoncer le théorème de Dynkin.
- (2) Soit $\mathcal{F} \subset \mathcal{F}(\mathbb{R}, \mathbb{R})$ la plus petite partie de l'ensemble des fonctions de \mathbb{R} dans \mathbb{R} qui soit stable par limite simple (ie si $f_{\infty} : \mathbb{R} \to \mathbb{R}$ est la limite simple d'une suite $(f_n)_{n \geq 0}$ de fonctions de \mathcal{F} alors $f_{\infty} \in \mathcal{F}$) et contenant $C(\mathbb{R}, \mathbb{R})$ l'ensemble des fonctions continues de \mathbb{R} dans \mathbb{R} . On admet pour le moment que \mathcal{F} est un espace vectoriel.
 - (a) Montrer alors que { $A \in \mathcal{B}(\mathbb{R}) \mid \mathbb{1}_A \in \mathcal{F}$ } est un λ -système qui contient les intervalles $]\alpha, b[$ avec $\alpha < b \in \mathbb{R}$.
 - (b) Montrer que \mathcal{F} est exactement l'ensemble des fonctions boréliennes à valeurs dans \mathbb{R} .
- (3) On veut maintenant montrer que \mathcal{F} est bien un espace vectoriel. Pour toute fonction $g : \mathbb{R} \to \mathbb{R}$, on note $\mathcal{F}(g) \doteq \{ f \in \mathcal{F} \mid \lambda f + g \in \mathcal{F} \text{ pour tout } \lambda \in \mathbb{R} \}$.
 - (a) Montrer que si $g \in C(\mathbb{R}, \mathbb{R})$, alors $\mathcal{F}(g) = \mathcal{F}$.
 - (b) Etendre le résultat à $g \in \mathcal{F}$ quelconque et conclure.

Exercice 3. Soient (E, \mathcal{A}, μ) un espace mesuré et $(f_n)_{n \geq 0}$, f des fonctions positives mesurables. On suppose que $f \in L^1$, que $f \leq \underline{\lim} \, f_n \, \mu - \mathfrak{p}.\mathfrak{p}.$ et que $\overline{\lim} \, \int f_n d\mu \leq \int f d\mu$.

- (1) Montrer que $\int f d\mu \leq \underline{\lim} \int f_n d\mu$ puis que $\int f_n d\mu \rightarrow \int f d\mu$.
- (2) Montrer que $\int f_n \wedge f d\mu \rightarrow \int f d\mu$ puis que $f_n \rightarrow f$ dans L^1 .
- (3) Montrer que l'on a pas forcement $f_n \to f$ μ -p.p.

Exercice 4. Soit $\psi: \mathbb{R} \to \mathbb{R}$ définie par $\psi = \mathbb{1}_{[0,1/2[} - \mathbb{1}_{[1/2,1[}$. On considère sur [0,1] la fonction $\phi \doteq \mathbb{1}_{[0,1]}$ et pour tous entiers $n \geq 0$ et $0 \leq k \leq 2^n - 1$, la fonction $\psi_{n,k}: [0,1] \to \mathbb{R}$ définie par $\psi_{n,k}(x) \doteq 2^{n/2}\psi(2^n(x-\frac{k}{2^n}))$ pour tout $x \in [0,1]$.

- (1) Montrer que les fonctions ϕ et $(\psi_{n,k})_{n\geq 0,0\leq k\leq 2^n-1}$ forment pour le produit scalaire $\langle f,g\rangle \doteq \int_0^1 f(x)g(x)dx$ une famille orthonormée de $L^2([0,1],\mathcal{B}([0,1]),\lambda)$.
- (2) Pour tout $j \ge 0$, on note V_j l'espace vectoriel engendré par les fonctions ϕ et $\psi_{n,k}$ pour $0 \le n \le j$ et $0 \le k \le 2^n 1$.
 - (a) Vérifier que V_j est une suite croissante et montrer que si $V_{\infty} \doteq \bigcup_{j \geq 0} V_j$, alors V_{∞} est dense dans $C([0,1],\mathbb{R})$ pour la norme infinie et pour la norme $\| \ \|_2$.
 - (b) Montrer que V_{∞} est dense dans $L^2([0,1],\mathcal{B}([0,1]),\lambda)$ pour la norme $\| \ \|_2$.
- (3) Soit $f \in L^2([0,1],\mathcal{B}([0,1]),\lambda)$. Pour tout $j \geq 0$, on note

$$f_j \doteq \langle f, \varphi \rangle \varphi + \sum_{n=0}^j \sum_{k=0}^{2^n-1} \langle f, \psi_{n,k} \rangle \psi_{n,k} \,.$$

- (a) Vérifier que $\|f_i\|_2 \le \|f\|_2$ puis que f_i converve dans L^2 vers une fonction borelienne f_{∞} .
- (b) Montrer que $\langle f f_{\infty}, g \rangle = 0$ pour tout $g \in V_{\infty}$ puis que $f_{\infty} = f$ p.p.

Et demain.

Une question, un chercheur
Conférence ouverte aux élèves de classes préparatoires et aux étudiants de licence
Comment devient-on probabiliste?

par Wendelin Werner

vendredi 7 novembre 2008

20h

amphithéâtre Hermite
à l'Institut Henri Poincaré

11 rue Pierre et Marie Curie

75005 Paris