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Abstract. This paper presents a methodology and algorithm for generating diffeomorphisms of the sphere onto
itself, given the displacements of a finite set of template landmarks. Deformation maps are constructed by integration
of velocity fields that minimize a quadratic smoothness energy under the specified landmark constraints. We present
additional formulations of this problem which incorporate a given error variance in the positions of the landmarks.
Finally, some experimental results are presented. This work has application in brain mapping, where surface data
is typically mapped to the sphere as a common coordinate system.
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1. Introduction

Developing a rigorous, quantitative methodology for
comparing shape is a contemporary problem in-
vestigated in image analysis. A typical application
in medical imaging—in particular neuroimaging—is
comparison of the shape of anatomic structures be-
tween two individuals, and development of a statis-
tical theory which allows shape to be studied across
populations. This type of investigation is known as
computational anatomy [16]. It is motivated by evi-
dence (for example [10–12, 26]) of shape differences
between characteristically different populations—such
as males and females—and populations characterized
by disease, drugs, etc. The hope is that a great deal can
be learned about disease from studying shape, and that
ultimately this type of investigation will enable some

diseases to be characterized by the shape of particular
anatomic structures.

Typically the anatomic structure of interest is mod-
eled as a 1, 2 or 3 dimensional submanifold of R

3, such
as a curve (1D), image (2D), surface (2D), or volume
(3D). Methodologies for studying shape differences are
then developed for these models. A main component in
the analysis, after obtaining the individual model rep-
resentations for the subjects being studied, is the estab-
lishment of correspondence of anatomically homolo-
gous substructures between the subjects. For example,
if we are interested in comparing shape differences be-
tween faces of two individuals in images, we would
like to ensure that the coordinates of the left eye in one
image correspond to the left eye in the other image.
On a finer scale, we would like to ensure that the left
corner of the left eye corresponds appropriately. This
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correspondence should extend down to the finest res-
olution. However, a complete correspondence at this
scale usually can not be precisely attained because of
high variability. For example, wrinkles are a common
characteristic of elderly people, but the specific pattern
of wrinkles on any two individuals typically can not be
matched. One way to proceed in establishing a corre-
spondence is to manually identify a subset of points in
the two images which deliniate reliable and identifiable
features. We refer to these points as landmarks. Then,
we use the correspondence at this subset of points in
an optimal way to extend the correspondence over the
entire structure. This process is called landmark match-
ing. This paper focuses on landmark matching for a
particular geometric model—the unit sphere—which
is the usual 2D submanifold of R

3. The sphere is of in-
terest because it has become a standard configuration
onto which the cerebral cortex can be mapped, thereby
providing a common coordinate system for specifying
location on the surface [13, 15].

The methodology we pursue extends the work of
Joshi and Miller [18], Camion and Younes [8], and
Miller and Younes [22] on euclidean geometries such
as the plane and cube, and the work of Bakircioglu
et al. [3] on the sphere. More precisely, we are inter-
ested in finding an “optimal” map or transformation of
the sphere to the sphere that is constrained at a set of
landmarks and which is also constrained to be a diffeo-
morphism, ie. the map must be invertible, and both the
map and its inverse must be continuously differentiable.
Our chief contribution is two fold. First, other methods
for landmark-based spherical registration [32, 33] do
not explicitly include the diffeomorphism constraint in
their formulation, without which, it is possible for dis-
tinct points to be mapped to a single point. These meth-
ods are referred to as “small deformation” techniques
since diffeormophic transformations are typically only
possible for problems in which small deformations are
needed to match template and target. Second, our trans-
formations are not simply correspondence maps. They
simultaneously define a metric, in the mathematical
sense, which represents a natural measure of similar-
ity in shape between the two structures being matched.
The underlying mathematics of our approach has been
investigated in [8, 18, 22, 27, 28, 35, 36].

Small deformation landmark matching has been well
studied on euclidean geometries by Bookstein [5] via
the thin-plate spline, and generalized to arbitrary one
and two dimensional submainfolds by Joshi and collab-
orators [17, 19]. Active contour methods of [21] have

been applied to spherical landmark matching in [31].
However, these methods require a good initial approxi-
mation to the solution. Also related is the non-landmark
based approach of Fischl et al. [15]. Transformations
are obtained by minimizing the squared difference of
a scalar valued measure of geometry—which the au-
thors refer to as “convexity”—between the subject and
average model. Again, regularization terms are added
to the formulation but do not guarantee that one-to-one
mappings are obtained.

The large deformation setting, pioneered by
Christensen et al. [9] by modeling the deformation pro-
cess as a viscous fluid, is the setting pursued herein.
Specifically, we seek solutions φ : S2 × [0, 1] →
S2 × [0, 1], where S2 denotes the unit sphere, to the
ordinary differential equation (ODE)

d

dt
φ(x, t) = v(φ(x, t), t),

with initial condition φ(x, 0) = x . Indeed, if v(x, t)
is continuously differentiable, then it is proven in [17]
that the solution φ(x, t) exists, is unique, and is a dif-
feomorphism from S2 to S2 for each t ∈ [0, 1]. En-
ergetics on the space of diffeomorphisms are induced
via a smoothness constraint on the velocity fields of the
form

E(v) =
∫

S2×[0,1]
〈Lv(x, t), v(x, t)〉dµ(x)dt,

where L is a constant coefficient differential operator.
In the case of the sphere, the difficulty arises in defining
this smoothness operator.

One possibility, proposed in [3], is to work on a local
chart, and define a scalar operator for each coordinate.
The drawback of this setting is that the resulting vector-
valued operator is highly dependant on the local chart,
which introduces a complete anisotropy of the smooth-
ness constraint. Furthermore, since there is no global
chart for the sphere, at least one point must be chosen
to be fixed for the deformation map. This is accept-
able if the landmark data is located in the same region,
which is often the case in brain mapping applications,
where each hemisphere of the brain is registered sep-
arately. The present work eliminates such restrictions,
since the operator L is defined globally and we do not
make use of local coordinates. In practice, we have
chosen L = �2 where � is the laplacian operator on
vector fields, which is not, in the case of the sphere,
the scalar laplacian applied to each coordinate. Thus,
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the regularization term is isotropic, and no point must
be chosen to be invariant. The algorithm is therefore
suitable for landmarks placed over the entire surface of
the sphere, and produces solutions which are rotation
invariant, i.e. if two template/target landmark configu-
rations are the same up to a rotation, then two solutions
will be identical up to the same rotation. A final ad-
vantage of our formulation is that it yields a simpler
numerical approach. In this paper we introduce a sec-
ond formulation of the problem, which is an extension
of the euclidean landmark matching in [8] and [22] to
the sphere.

This paper is organized as follows. The mathemati-
cal setting, notation, and formulation of the minimiza-
tion problems investigated are presented in Section 2.
We introduce the related vector spline interpola-
tion problem in Section 3, which enables a simpli-
fied reformulation of the original minimization prob-
lems. The reformulations are presented in Section 4.
Finally, the numerical implementations are presented
in Section 5 together with some experimental results
with synthesized examples, and a conclusion is found in
Section 6.

2. Mathematical Setup and Notation

2.1. Riemannian Geometry

We consider the unit sphere S2 as a smooth
2-dimensional submanifold of R

3, equipped with the
Riemannian metric defined by restricting to each tan-
gent space the ambient inner product of R

3. Lower case
letters x, y, . . . represent points on the sphere, and we
use greek letters to represent tangent vectors on the
sphere, e.g. αx will denote a tangent vector at point x ,
ie. an element of the tangent plane at x : Tx S2. On this
tangent space the Euclidean scalar product is denoted
〈·, ·〉, and the norm | · |. We will also use the notion of
covariant derivatives for vector fields and tensor fields
on manifolds. Since the sphere S2 is embedded in R

3,
the covariant derivative can be simply defined as the
orthogonal projection of the usual derivative on the tan-
gent space. Basic notions about Riemannian manifolds
and covariant derivatives can be found in [6].

2.2. Large Deformations

Deformations maps ϕ : S2 → S2 are generated by in-
tegration of time-dependant vector fields v(x, t), x ∈

S2, t ∈ [0, 1]. Thus consider the transport equation:{
dφv

dt (x, t) = v(φv(x, t), t) ∀t ∈ [0, 1]

φv(x, 0) = x ∀x ∈ S2,
(1)

and set ϕ = φv(·, 1). Existence and properties of such
transformations depend of course on the regularity as-
sumptions we make on the deformation flows v(x, t).
This is described in the following paragraph.

2.3. The Energetic Space V

We denote χ (S2) the space of smooth vector fields
on the sphere, and µ the uniform probability distri-
bution (the normalized Haar measure). We denote H ,
the Hilbert space of square integrable vector fields on
the sphere defined by the inner product:

〈u, v〉H =
∫

S2
〈u(x), v(x)〉dµ(x) .

Let L:χ (S2) → H be a linear symmetric and strongly
monotone operator (the strong monotony says that
there exists c > 0 such that 〈Lu, u〉H ≥ c〈u, u〉H for
any u ∈ χ (S2)). From L , we define the so-called ener-
getic scalar product

〈u, v〉V
.= 〈Lu, v〉H

and the associated energetic norm ‖ ‖V defined on
χ (S2). Using the Friedrichs extension procedure (see
e.g. [37]), we define the associated energetic space V
which is an Hilbert space V ⊂ H uniquely defined as
the closure of χ (S2) for the energetic scalar product.
The specifics of this construction and the properties of
the space V can be found in [27]. For the special pur-
pose of landmark matching we will also require that V
be continuously embedded in the space of vector fields
of class C1, which means:

∃M > 0, ∀u ∈ V

sup
x∈S2

|u(x)| + |∇u(x)| ≤ M‖u‖V (∗)

Of special interest will be the case L = −� or L = �2

where � is the Laplacian operator on smooth vector
fields on S2—as defined by the Hodge theory—since
it is invariant under the action of the group of rotation.
For the definition of the Laplacian in this particular
case, see e.g. [20].
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The time-dependent vector fields v(x, t) considered
herein will be supposed to belong to L2([0, 1], V ) i.e.
they satisfy E(u)

.= ∫ 1
0 ‖v(·, t)‖2

V dt < ∞. This quan-
tity will be called energy of v(x, t). Actually the set A
of deformation maps generated through (1) by such ve-
locity fields can be proven to be a group, equipped with
a right invariant weak structure of infinite dimensional
manifold whose tangent space at I d is (V, ‖ · ‖V ). In
this setting, a geodesic distance d on A is defined, and
satisfies

d(I d, ϕ)2 = inf
v

{E(v), φv(·, 1) = ϕ}.

Again, see [27, 29] for details of this theory.

2.4. Formulation of the Minimization Problems

We now state formally the two problems investigated.
Exact landmark matching refers to the case in which
the spatial position of the landmarks can be identified
accurately, while inexact landmark matching accounts
for the spatial variability in identifying the landmarks,
which is assumed to be gaussian with diagonal covari-
ance σ I d . For the inexact matching case, we present
two formulations. The first formulation is the most
natural, as it simply includes as a term of the functional
the amount of error in identifying the landmarks (sum
of distances between the targets and the postion of
the landmarks at the end of the flow). The second
formulation is actually a generalization of the exact
matching case, as will be explained in the following.

The landmark matching problem

Exact Landmark Matching Problem. Let x1, . . . , xn

(the initial landmarks) and y1, . . . , yn (the target land-
marks) be distinct points on S2. The exact landmark

matching problem on the sphere consists of finding
a time-dependant vector field v(x, t) in L2([0, 1], V )
such that

(LM)
∫ 1

0
‖v(·, t)‖2

V dt is minimal subject to

φv(xi , 1) = yi for all i ∈ {1, . . . , n} .

The optimal diffeomorphism then is given by ϕ =
φv(·, 1).

We recall that φv(x, t) denotes the solution to the
transport equation (1). Hence this problem corresponds
to finding a diffeomorphism ϕ in the group A which
match the landmarks and minimizes the geodesic dis-
tance d(I d, ϕ). Therefore this distance can also be seen
as a distance between the two sets of landmarks (this
will be more explicit in Section 4.1).

Inexact Landmark Matching Problem, First Formu-
lation. Suppose σ > 0 Given n distinct landmarks
(xi ) and their targets (yi ) as previously, find a time-
dependent vector field v(x, t) such that

(ILM1)
∫ 1

0
‖v(·, t)‖2

V dt + 1

σ 2

n∑
i=1

ψ(φv(xi , 1), yi )
2

is minimal,

where ψ is the geodesic distance on S2, i.e. the angle
between two points on S2. The optimal diffeomorphism
then is given by ϕ = φv(·, 1).

Inexact Landmark Matching Problem, Second Formu-
lation. Suppose σ > 0. Given n distinct landmarks
(xi ) and their targets (yi ) as previously, find a time-
dependent vector field v(x, t) and trajectories xi (t) on
the sphere, such that

(ILM2)
∫ 1

0
‖v(t)‖2

V dt + 1

σ 2

n∑
i=1

∫ 1

0
|ẋi (t)

−v(xi , t)|2dt is minimal

subject to xi (0) = xi and xi (1) = yi

for all i ∈ {1, . . . , n} ,

where ẋi (t) = dxi
dt (t). The optimal diffeomorphism then

is given by ϕ = φv(·, 1).
At the heart of each of these landmark matching

problems, and the key to their simplification, is a sim-
ple minimum norm problem which is equivalent to



Landmark Matching via Large Deformation Diffeomorphisms on the Sphere 183

a generalization of the well known spline interpola-
tion problem [34]. Thus, we present the related vector
spline interpolation problem and its solution in the next
section.

3. Vector Spline Interpolation

Bookstein ([5], see also [2]) introduced a spline in-
terpolation method for solving the landmark matching
problem in the euclidean case, inspired by methods in
approximation theory called Radial Basis Functions or
variational splines [25]. These methods model the de-
formation map between the landmarks and their targets
by a vector field v such that yi = xi +v(xi ), this vector
field being a sum of spline vector fields centered at each
point xi . This spline interpolation problem led to a sim-
ple linear system. In the case of the sphere this method
alone cannot solve the landmark matching problem, but
it can be seen as an infinitesimal version of it, providing
a method for the interpolation of vector fields on S2,
and used as first step in the building of our deformation
maps. The theory of Radial Basis Functions has been
widely studied, even in the general case of manifolds
(see [14], [24] and [4] for results on the sphere) but
apparently only for functional approximation. On the
other hand, flow interpolation has numerous applica-
tions in fluid dynamics (see e.g. [1] for meteorological
issues).

3.1. Problem Statement

The spline problem states as follows:

Vector Spline Interpolation Problem. Given n distinct
landmarks xi on the sphere, and associated tangent vec-
tors γi ∈ Txi S

2, find v ∈ V such that

(VSI) ‖v‖V is minimal subject to v(xi ) = γi

∀i ∈ {1, . . . , n}.
As in the previous section, we have an inexact state-

ment of this problem.

Inexact Vector Spline Interpolation Problem. Given
n landmarks xi on the sphere, and associated tangent
vectors γi ∈ Txi S

2, find v ∈ V such that

(IVSI) J (v) = ‖v‖2
V + 1

σ 2

n∑
i=1

|v(xi ) − γi |2

is minimal.

3.2. The Reproducing Kernel

Notation. In the following we will consider the n
landmarks as an element of the product manifold (S2)n

and write x = (x1, . . . , xn) ∈ (S2)n . A tangent vector
at x will be denoted α = (α1, . . . , αn) ∈ Tx(S2)n and
〈·, ·〉 will also denote the scalar product on Tx(S2)n:

〈α,β〉 =
n∑

i=1

〈αi , βi 〉.

From assumption (*) made on the energetic space
V , it directly follows that V is a reproducing kernel
Hilbert space: for each point x ∈ S2, and each tangent
vector αx ∈ Tx S2 the linear form δαx

x : v �→ 〈v(x), αx 〉
is continuous on V . Then by the Riesz representation
property, there exists δ̂αx

x ∈ V such that

〈
δ̂αx

x , v
〉
V = 〈v(x), αx 〉 ∀v ∈ V

Definition. (a) We call K , the reproducing kernel,
which associates to every x, y ∈ S2 the linear operator
acting on the tangent spaces K (x, y) : Tx S2 → Ty S2

and defined by the formula

K (x, y)αx
.= δ̂αx

x (y).

(b) For x = (x1, . . . , xn) ∈ (S2)n we denote K (x)
the linear endomorphism of Tx(S2)n defined by:

K (x)α
.=

(
n∑

i=1

K (xi , x1)αi , . . . ,

n∑
i=1

K (xi , xn)αi

)
.

We denote also Kσ (x) = K (x) + σ 2 I for every σ > 0,
where I is the identity map of Tx(S2)n .

The linearity of K (x, y), i.e. linearity of δ̂αx
x with

respect to αx ∈ Tx S2, follows from the linearity of the
inner product.

Now the following result gives us the solution to
(VSI) and (IVSI) problems.

Proposition 1. (a) The solution to (VSI) is unique
and given by

vopt
.= δ̂αx

.=
n∑

i=1

δ̂αi
xi

=
n∑

i=1

K (xi , ·) αi

where the αi ∈ Txi S
2 are solutions to the 2n-

dimensional linear system K (x)α = γ, or more
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explicitely:

n∑
j=1

K (x j , xi )α j = γi ∀i ∈ {1, . . . , n}.

Moreover, J (vopt ) = ‖vopt‖2
V = ∑n

i=1〈αi , γi 〉.
(b) For every σ > 0, the solution to (IVSI) is unique

and given by

vopt
.= δ̂αx

.=
n∑

i=1

δ̂αi
xi

where the αi are solutions to K (x)α + σ 2α = γ i.e.

n∑
j=1

K (x j , xi )α j + σ 2αi = γi ∀i ∈ {1, . . . , n}.

Moreover, J (vopt ) = ∑n
i=1〈αi , γi 〉.

So, we may write the solution to both spline inter-
polation problems as Kσ (x)α = γ with J (vopt) =
〈γ, Kσ (x)−1γ〉, where σ = 0 for the exact matching
case.

It is evident from this expression that the solution
depends on L only through K . Therefore, if the repro-
ducing kernel is known, then explicit knowledge of the
operator L is not needed. In fact, instead of chosing an
operator L to define the space V , we could choose a
specific operator K (x, y) with the appropriate proper-
ties as a starting point and deduce the operator L from
it.

Proof of Proposition 1: (a) For any β ∈ TxS2, let
us define Vβ = {v ∈ V : v(xi ) = βi , i = 1, . . . , n}.
In particular the space of admissible vector fields is
Vγ . Note that Vβ is non empty since the landmarks are
distinct and χ (S2) is included in V . Moreover, if vβ ∈
Vβ then Vβ = vβ + V0, i.e. Vβ is an affine subspace,
namely a translation of V0. Now consider the subspace
D = {v ∈ V : v = ∑n

i=1 δ̂αi
xi

, αi ∈ Txi S
2}. In fact, the

orthogonal complement of D, written D⊥ is exactly
V0, for if u = ∑n

i=1 δ̂αi
xi

and v ∈ V0, we have

〈u, v〉V =
n∑

i=1

〈
δ̂αi

xi
, v

〉
V =

n∑
i=1

〈v(xi ), αi 〉 = 0,

and if v /∈ V0 then clearly we may choose a u ∈ D
such that 〈u, v〉V �= 0. Thus, V0 is closed, and since
Vγ is a translation of V0, the solution vopt exists, is
unique, and is orthogonal to V0 = D⊥ by the projection

theorem. But, since D is finite dimensional, it is closed
and it follows that V ⊥

0 = D⊥⊥ = D. Therefore, the
solution is of the asserted form, and since the linear
constraints must be satisfied, the solution can be found
by simply solving the linear system K (x)α = γ for α.
Finally,

J (vopt) = ‖vopt‖2
V =

n∑
i=1

〈
δ̂αi

xi
, vopt

〉
V

=
n∑

i=1

〈v(xi ), αi 〉

=
n∑

i=1

〈γi , αi 〉 = 〈γ,α〉.

(b) Note that on each Vβ, the second term of the func-
tional J (v) is constant and equal to 1

σ 2

∑n
i=1 |βi − γi |2.

Thus, the functional is minimal when ‖v‖2
V is minimal.

This proves that a solution to the inexact problem nec-
essarily belongs to D. On this subspace, we can rewrite
J (v) as a quadratic function of the variables αi , where
v = ∑n

i=1 δ̂αi
xi

:

J (v) = ‖v‖2
V + 1

σ 2

n∑
i=1

|v(xi ) − γi |2

=
n∑

i=1

〈
δ̂αi

xi
, v

〉
V + 1

σ 2

n∑
i=1

|γi − v(xi )|2

=
n∑

i=1

〈αi , v(xi )〉 + 1

σ 2

n∑
i=1

|γi − v(xi )|2

= 〈α, K (x)α〉 + 1

σ 2
|γ − K (x)α|2

= 〈α, K (x)α〉 + 1

σ 2
(|γ|2 + |K (x)α|2

−2〈γ, K (x)α〉).

Hence J (v) has a unique minimum on D, which we
obtain by computing its gradient as a function of α.
Using the symmetry of K (x) we have

∇ J (v) = 2

(
K (x)α + 1

σ 2
K (x)2α − 1

σ 2
K (x)γ

)

= 2K (x)

(
α + 1

σ 2
K (x)α − 1

σ 2
γ

)
.

Finally, we find that this gradient vanishes if and only
if σ 2α + K (x)α = γ, or more explicitely

σ 2α j +
n∑

i=1

K (xi , x j )αi = γ j for all i = 1, . . . , n.
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So the solution is given by solving the linear system
Kσ (x)α = K (x)α + σ 2α. Furthermore, we have

J (vopt) = 〈α, K (x)α〉 + 1

σ 2
|γ − K (x)α|2

= 〈α, K (x)α〉 + σ 2|α|2 = 〈α, Kσ (x)α〉,

hence J (vopt) = 〈α,γ〉

4. Landmark Matching via Large Deformations

4.1. Reformulation of the Minimization Problems

We now return to the landmark matching problems as
they were stated at the beginning of the paper. We refor-
mulate the minimization equations, taking advantage of
the spline interpolation theory of the previous section.
The idea is to notice that in the three stated problems,
the matching conditions only involve the vector fields
v(x, t) along specific paths: the images φv(xi , t) for
(LM) and (ILM1), and the trajectories xi (t) for (ILM2).
In order to use a unified notation we will denote these
specific paths in the three cases by xi (t).

• (LM) and (ILM1) problems: In these cases we have
ẋi (t) = v(xi (t), t), thus for fixed trajectories xi (t) the
energy of v(x, t) is minimal if at each time t , v(·, t)
is the solution to (VSI) with γi = ẋi (t).

• (ILM2) problem: For fixed trajectories xi (t) the
(ILM2) functional is minimal if at each time t , v(·, t)
is the solution to (IVSI) with γi = ẋi (t).

These remarks lead us to reformulate the landmark
matching problems as minimization problems ex-
pressed with respect to these trajectories instead of the
velocity fields.

Exact Landmark Matching Problem. Given n distinct
landmarks (xi ) and their targets (yi ) find trajectories
x(t) = (xi (t)) on the sphere such that

J (x) =
∫ 1

0
〈ẋ(t), K (x(t))−1ẋ(t)〉 dt

is minimal subject to xi (0) = xi ,

and xi (1) = yi ∀i.

In other words, find a minimizing geodesic between
(xi ) and (yi ) on the manifold (S2)n equipped with the
metric tensor K −1.

Inexact Landmark Matching Problem, First Formula-
tion. Suppose σ > 0. Given n distinct landmarks xi

and their targets yi , find trajectories xi (t) such that

J (x) =
∫ 1

0
〈ẋ(t), K (x(t))−1ẋ(t)〉 dt

+ 1

σ 2

n∑
i=1

ψ(xi (1), yi )
2 is minimal subject to

xi (0) = xi ∀i.

Inexact Landmark Matching Problem, Second Formu-
lation. Suppose σ > 0. Given n distinct landmarks
xi and their targets yi , find trajectories xi (t) such that

J (x) =
∫ 1

0
〈ẋ(t), Kσ (x(t))−1ẋ(t)〉dt is minimal

subject to xi (0) = xi and xi (1) = yi ∀i.

In other words, find a minimizing geodesic between
(xi ) and (yi ) on the manifold (S2)n equipped with the
metric tensor K −1

σ .
In each case, the optimal diffeomorphism is given

by ϕ = φv(·, 1) with v(x, t) = ∑n
i=1 K (xi (t), x)αi (t)

and α(t) = K (x(t))−1ẋ(t).
Thus we are led to perform a minimization with re-

spect to the variables xi (t) instead of the vector fields,
v(x, t), over the entire space. We also remark that the
exact matching problem becomes a particular case of
(ILM2) with σ = 0. This justifies a posteriori the in-
troduction of (ILM2). These two formulations ((LM)
and (ILM2)) provide the definition of a true metric be-
tween sets of landmarks on the sphere, given by the
formula d((xi ), (yi )) = ∫ 1

0

√
〈ẋ(t), Kσ (x(t))−1ẋ(t)〉dt

at convergence. This is not the case for (ILM1). See
[8], and Miller and Younes [22] for details.

4.2. Variation of the Functional

We now compute the variation of the functional J in
each case.

4.2.1. First Formulation. We have

J (x) =
∫ 1

0
〈ẋ(t),α(t)〉dt + 1

σ 2

n∑
i=1

ψ2(yi , xi (1)).

Let η(t) be a direction of variation of x(t), i.e. an el-
ement of Tx(t)(S2)n , with the condition η(0) = 0. ∇η

will denote for the covariant derivative in the direction
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η(t), and the dot notation applied to tangent vectors (α̇,
η̇, . . . ) refers to covariant derivatives in the direction
ẋ = ∂x

∂t . We consider a variation xr = (xr,1, . . . , xr,n)
of x such that ∂xr (t)

∂r |r=0 = η(t). Leaving out the variable
t , we have, with derivatives taken at r = 0:

J (xr ) =
∫ 1

0
〈ẋr , K (xr )−1ẋr 〉 dt

+ 1

σ 2

n∑
i=1

ψ2(yi , xr,i (1)).

dJ(xr )

dr
=

∫ 1

0

∂〈ẋr ,αr 〉
∂r

dt + 1

σ 2

n∑
i=1

dψ2(yi , xr,i (1))

dr
.

Now,

∂〈ẋr ,αr 〉
∂r

= ∂〈ẋr , K (xr )−1ẋr 〉
∂r

= 〈∇η ẋ, K (x)−1ẋ〉 + 〈ẋ, ∇η{K (x)−1}ẋ〉
+〈ẋ, K (x)−1∇η ẋ〉

= 2〈η̇, K (x)−1ẋ〉 + 〈ẋ, ∇η{K (x)−1}ẋ〉
because ∇η ẋ = ∇ẋη = η̇ (covariant derivative) and
K (x)−1 is symmetric. Therefore we have

dJ(xr )

dr
= A + B + C

with

A = 2
∫ 1

0
〈α, η̇〉

B =
∫ 1

0
〈ẋ, ∇ηK (x)−1ẋ〉 dt

C = 1

σ 2

n∑
i=1

dψ2(yi , xr,n(1))

dr
.

Computation of A. Since η(0) = 0 and η(1) = 0 we
have

A = 2〈α(1),η(1)〉 − 2
∫ 1

0
〈α̇,η〉 dt.

Computation of B.

B = −
∫ 1

0
〈ẋ, K (x)−1∇ηK (x)α〉 dt

= −
∫ 1

0
〈K (x)−1ẋ, ∇ηK (x)α〉 dt

= −
∫ 1

0
〈α, ∇ηK (x)α〉 dt.

Thus we have to compute ∇ηK (x), covariant deriva-
tive of the operator K (x). K (x) is a linear operator in
Tx1 S2×· · ·×Txn S2. If πx

i is the i th canonical projection

πx
i : Tx1 S2 × · · · × Txn S2 → Txi S

2,

we can write, directly from the definition of K (x):

K (x)i
.= πx

i ◦ K (x) =
n∑

j=1

K ji (x) ◦ πx
j

with

K ji (x) = K (x j , xi ).

Now,

∇ηK (x)i =
n∑

j=1

∇ηK ji (x) ◦ πx
j

∇ηK ji = ∇η j K ji + ∇ηi K ji

The computation of the derivatives of the reproducing
kernel are given in annex B. Eventually we get

B =
∫ 1

0

n∑
i=1

〈
ηi , β

x
i (α)

〉
dt

with

βx
i (α) = 2

(
n∑

j=1

k ′(ψi j )〈αi , Tjiα j 〉ei j + k(ψi j )

×
(

cos ψi j − 1

sin ψi j

)
〈αi , T ⊥

j i α j 〉 fi j

)

where Tji = T (x j , xi ), ψi j = ψ(xi , x j ) and (ei j , fi j )
is the mutual basis of (xi , x j ).

Computation of C.

C = 1

σ 2

n∑
i=1

dψ2(yi , xr,n(1))

dr

Let (·, ·) denote the usual dot product on R
3. We have

ψ(x, y) = Arccos(x, y), hence

C = − 1

σ 2

n∑
i=1

2ψ(yi , xi (1))√
1 − (yi , xi (1))

〈
�xi (1)(yi ), ηi (1)

〉
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where �xi (1) yi is the projection of yi ∈ S2 ⊂ R
3 on

Txi (1)S2 ⊂ R
3 the tangent space at xi (1).

4.2.2. Second Formulation. We include here the case
of exact matching, which correspond to σ = 0. Here
we consider variations η with two endpoint conditions
η(0) = 0 and η(1) = 0. The variation of the functional
is

dJ(xr )

dr
= A + B

with

A = 2
∫ 1

0
〈α, η̇〉 = −2

∫ 1

0
〈α̇,η〉 dt,

and

B = −
∫ 1

0

〈
α, ∇ηKσ (x)α

〉
dt.

But since Kσ (x) = K (x) + σ 2 I , we have ∇ηKσ (x) =
∇ηK (x), and thus the previous formula holds for B:

B =
∫ 1

0

n∑
i=1

〈
ηi , β

x
i (α)

〉
dt.

4.3. Gradient of the Functional

To write a gradient of J we must specify a scalar prod-
uct on the space of infinitesimal deformations of the
paths. Actually the expresion of the functional requires
that the paths be of H 1 regularity, and therefore we will
choose:

〈η, ξ〉 .=
∫ 1

0
〈η̇, ξ̇〉 dt.

4.3.1. First Formulation. Here the infinitesimal vari-
ations η and ξ are such that η(0) = ξ(0) = 0. We have

〈η, ξ〉 = 〈η̇(1), ξ(1)〉 −
∫ 1

0
〈η̈, ξ〉 dt

=
n∑

i=1

〈η̇i (1), ξi (1)〉 −
∫ 1

0

n∑
i=1

〈η̈i (t), ξi (t)〉 dt.

The i-th component of the gradient is then given by

∇̈ J (x)i (t) = 2α̇i (t) − βx
i (α)

with the two initial conditions

∇̇ J (x)i (1) = − 1

σ 2

2ψ(yi , xi (1))√
1 − (yi , xi (1))

�xi (1)(yi) + 2αi (1),

∇ J (x)i (0) = 0.

This gradient can be computed by numerical integra-
tion.

4.3.2. Second Formulation. Here we have η(0) =
ξ(0) = 0 and η(1) = ξ(1) = 0. We include the case of
exact matching (σ = 0).

〈η, ξ〉 = −
∫ 1

0
〈η̈, ξ〉 dt

= −
∫ 1

0

n∑
i=1

〈η̈i (t), ξi (t)〉dt .

Then

∇̈ J (x)i (t) = 2α̇i (t) − βx
i (α)

with the two initial conditions ∇ J (x)i (0) = 0 and
∇ J (x)i (0) = 0.

5. Implementation and Experiments

5.1. Computation of the Vector Spline Interpolation

We now turn to the problem of effective computation of
the reproducing kernel and of the solution to (VSI) and
(IVSI). We show that in the case of L = �2 these com-
putations are greatly simplified and reduce to applying
parallel transport operators to the tangent vectors.

5.1.1. Mutual Basis and Parallel Transport on the
Sphere. Given two points x, y ∈ S2 we define the
basis (exy, fxy) of tangent space Tx S2 and (eyx , fyx ) of
Ty S2 by the formulas:

fxy = x ∧ y

‖x ∧ y‖
exy = fxy ∧ x

and

fyx = y ∧ x

‖y ∧ x‖ (= − fxy)

eyx = fyx ∧ y
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Figure 1. The mutual basis.

where ∧ denotes the vector cross-product (here points
and vectors are considered as vectors in R

3). These
basis can be refered to as mutual basis of the pair (x, y)
(see Fig. 1). Note that they are not defined when y = x
and when y is at the antipode of x .

Now define by T (x, y) the parallel transport1 of tan-
gent vectors on S2 along the great circle connecting x
and y. T (x, y) is a linear operator from Tx S2 to Ty S2. Its
matrix expressed in the basis (exy, fxy) and (eyx , fyx )
is −I d.

5.1.2. Computation of K (x, y). From assumptions
made on V , we have that the injection V ↪→ H is
compact and that the map L−1 : H → H is a compact,
self-adjoint operator [37]. Hence L−1, and thus also L ,
can be diagonalized in an Hilbertian basis of L2 [7].
Now the reproducing kernel can be computed with the
use of the following formula:

Proposition 2. Let λm, m ≥ 0 be the eigenvalues
of L , with Im the associated eigenspaces. We note
dm = dim(Im) and Eml ∈ Im for 1 ≤ l ≤ dm the or-
thonormalized eigenvectors for the L2 scalar product.
If x, y are points on S2, αx ∈ Tx S2 a tangent vector,
then

K (x, y).αx =
∑
m≥0

1

λm

dm∑
l=1

〈Eml(x), αx 〉Eml(y).

Proof: The vector field δαx
x ∈ V ⊂ H can be decom-

posed in the basis (Eml) of H : δαx
x = ∑

m,l〈Eml , δ
αx
x 〉H

Eml . Now 〈Eml , δ
αx
x 〉H = 1

λm
〈L Eml , δ

αx
x 〉H = 1

λm
〈Eml ,

δαx
x 〉V = 1

λm
〈Eml(x), αx 〉V .

Now we focus on the case L = �2. Again, note that
� is the laplacian operator defined on vector fields,

which is not the usual scalar spherical laplacian ap-
plied to each spherical coordinate, as it would be in
an euclidean setting. The eigenvectors for this opera-
tor are given by taking the gradients of the spherical
harmonics (see [20]): we have, for m ≥ 1,


λm = m2(m + 1)2

Eml1 = 1√
m(m + 1)

∇Yml

Eml2 = 1√
m(m + 1)

(∇Yml)⊥,

where Yml are the usual spherical harmonics and ⊥
denotes the π

2 -rotation on Tx S2.

Proposition 3. When L = �2 the reproducing kernel
satisfies

K (x, y) = k(ψ(x, y))T (x, y)

where k(ψ) is a scalar valued function of the angle
between two points on the sphere.

Proof: The full computation is given in annex A. It
provides an explicit formula for k(ψ). This function is
plotted on Fig. 3.

This expression for K is very convenient for numeri-
cal purpose since we only need to store the scalar func-
tion k. The operator T (x, y) can be computed easily
once the mutual basis of (x, y) is defined.

Figures 2 and 4 show visual representations of the
vector fields T (x, ·)αx and K (x, ·)αx . The vector αx is
represented by the arrow.

The resulting shape of the kernel function k(ψ) is
directly related to the initial choice of V . One can
adjust this shape by changing the eigenvalues of the
operator L , obtaining various types of deformation
mappings.

5.1.3. Numerical Solution to the Spline Interpola-
tion. The spline interpolation problem leads to a 2n-
dimensional linear system, as stated above. Writing the
matrix of this linear system would require that we work
coordinate frames on the sphere, e.g. the coordinate
frames obtained by stereographic projection at north
and south poles as in Bakircioglu et al. [3]. But as we
have seen, the operator K (x, y) has a very simple ex-
pression and can be computed directly using cartesian
coordinates. This fact has led us to choose a conju-
gate gradient algorithm to solve the linear system with-
out computing its matrix, and enables us to use only
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Figure 2. Parallel transport T (x, ·) αx of a vector αx . Front view and back view.

Figure 3. Graph of function k(ψ) for L = �2.

cartesian representation for both points and tangent
vectors.

Figure 5 represents the solution to a spline interpola-
tion problem with n = 4. The vectors γi are represented
by the arrows.

Figure 4. Computation of the vector field K (x, ·) αx . Front view and back view.

5.2. Implementation of the Landmark Matching
Problems

Algorithms to solve (LM), (ILM1) and (ILM2) prob-
lems have been written in the C programming language.
The method used to minimize the functional J is a sim-
ple gradient descent: at each iteration the trajectory x
is replaced by x −λ∇ J , which is then projected on the
sphere. The scalar coefficient λ is adaptively adjusted
to ensure minimization of the functional.

The main steps of the algorithm are the following:

• Compute the mutual basis of the n landmarks xn,t

for each discrete time step t ∈ {1, . . . , T }. These
basis are the key elements for the computation of the
reproducing kernel.

• For each time step t , compute the solution to the
spline interpolation problem by solving the linear
system K (xt )αt = ẋt , where ẋt is an appropriate
discretisation of the time derivative of xt . This is
done by a conjugate gradient algorithm. Again, the
advantage of such a method is that it does not require
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Figure 5. Solution to a spline interpolation problem with n = 4.

Figure 6. Experiment with two landmarks.

the explicit matrix form of K (xt ), which would re-
quire that we work with coordinate charts instead of
cartesian coordinates.

• Compute J (x) and its gradient ∇ J (x).
• Compute x̃ = x − λ∇ J (x) and reproject on the

sphere, with different values of λ, until J (x̃) < J (x).
The mutual bases are recalculated and the corre-
sponding linear system is solved at each time step.

• Set x = x̃ at convergence.

5.3. Experiments

Some results of the algorithms described above are
presented here. Figures 6 to 10 show visual represen-
tations of the computed deformation maps. On each
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Figure 7. Experiment with two landmarks.

figure are plotted the initial (circles) and target land-
marks (crosses), the trajectories xi (·), the flowed land-
marks positions φ(xi , t) (diamonds), and the deforma-
tion of a regular grid through the action of the dif-
feomorphism at different times t ∈ [0, 1]. The initial
trajectories (before minimization) are set to be the sec-
tions of the great circle connecting the landmarks to
their targets. Note that this initialization already pro-
vides a true diffeomorphism matching the landmarks.
In the experiments with 5 and 10 landmarks, the posi-
tions of the landmarks and their targets were chosen at
random.

For each experiment, we have also plotted the en-
ergy (squared V -norm) of the time-dependant vector
field v(x, t). As we have seen, the landmark matching

problem can be reformulated in terms of geodesics on
the manifold (S2)n . Therefore this energy must be con-
stant for all time at the end of the minimization. In the
(LM) and (ILM2) cases, its square root gives the dis-
tance between the two sets of landmarks (which is also
d(Id, ϕ)).

In the first example (Fig. 6), there is a large differ-
ence between trajectories before and after minimiza-
tion: they tend to move away from each other since
at first they cross with opposite directions, which has
very high cost. Conversely, in Fig. 8, trajectories tend
to draw near Note also the substantial regularization
achieved by the minimization in Fig. 6. In Figs. 9 and
10 some of the landmark trajectories cross one another,
which may seem counter intuitive to a sequence of
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Figure 8. Experiment with two landmarks.
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Figure 9. Experiment with five landmarks.
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Figure 10. Experiment with ten landmarks.
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transformations that are diffeomorphic. However, the
flow of the particles which these trajectories represent
do not cross at the same time and therefore the parti-
cles from two differented trajectories never occupy the
same position at the same time.

6. Conclusion

We have presented three formulations of the landmark
matching problem on the sphere—the solution to each
provides a diffeomorphism of the sphere to itself, with
landmark constraints. In the experiments, we have seen
good performance of the algorithm. In particular, the
algorithm achieved diffeomorphic mappings for se-
vere landmark constraints, for which other landmarks
matching techniques would clearly fail to maintain the
topology of the manifold (see Joshi [18] for a patho-
logical example). A metric between sets of landmarks
is simultaneously generated from the mapping, which
provides a natural setting for statistical comparison and
fits the framework of [22]. In future work, we plan to
apply the algorithm to brain mapping studies, and to
extend the large deformation setting to a broader class
of manifolds.

Appendix

A. Proof of Proposition 3: Computation of the
Reproducing Kernel

Since � is rotation invariant, K (x, y) is also rotation
invariant, and it only depends on the angle between x
and y. Thus we need only to compute it in a special
case, say θx = π

2 , ϕx = 0 and θx = π
2 , ϕx = ϕ in polar

coordinates (θ is the colatitude and ϕ the longitude). We
will note (∂ x

θ , ∂ x
ϕ ) (resp. (∂ y

θ , ∂
y
ϕ )) the coordinate frames

at x (resp. y). Note that in this special case these are
orthonormal basis of Tx S2 (resp. Ty S2).

There are 2m +1 spherical harmonics of order m for
m ≥ 0 which are, in polar coordinates (see [23])

Ym0(θ, ϕ) = km0 Pm(cos θ )

for m ≥ 0, and

Y c
ml(θ, ϕ) = kml Pl

m(cos θ ) cos lϕ

Y s
ml(θ, ϕ) = kml Pl

m(cos θ ) sin lϕ

Figure 11. Positions of points x and y.

for m ≥ 1 and 1 ≤ l ≤ m, with


km0

√
2m + 1

4π
m ≥ 0

kml =
√

2m + 1

2π

(m − l)!

(m + l)!
m ≥ 1, 1 ≤ l ≤ m.

Pm are the Legendre polynomials

Pm(x)= 1

2mm!

dm

dxm
(x2 − 1)m =

∑
m
2 ≤k≤m

(−1)m−k

× (2k − 1)!!

(m − k)!(2k − m)!2m−k
x2k−m

and Pl
m the associated Legendre functions:

Pl
m(x) = (−1)l(1 − x2)l/2 dl

dxl
Pm(x)

= (−1)m+l(1 − x2)l/2
∑

m+l
2 ≤k≤m

(−1)k

× (2k − 1)!!

(m − k)!(2k − (m + l))!2m−k
x2k−(m+l)

We use the notation (2n +1)!! = 1 ∗ 3 ∗ · · · ∗ (2n +1)
and (2n)!! = 2 ∗ 4 ∗ · · · ∗ (2n) with the rule 0!! =
(−1)!! = 1. Now we have, for m ≥ 1 and 1 ≤ l ≤ m:

∇Ym0(x) = −km0 P ′
m(0) ∂ x

θ

∇Ym0(x)⊥ = −km0 P ′
m(0) ∂ x

ϕ

∇Y c
ml(x) = −kml Pl′

m (0) ∂ x
θ
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∇Y c
ml(x)⊥ = −kml Pl′

m (0) ∂ x
ϕ

∇Y s
ml(x) = kml Pl

m(0)l ∂ x
ϕ

∇Y s
ml(x)⊥ = −kml Pl

m(0)l ∂ x
θ

and

∇Ym0(y) = −km0 P ′
m(0) ∂

y
θ

∇Ym0(y)⊥ = −km0 P ′
m(0) ∂ y

ϕ

∇Y c
ml(y) = −kml Pl′

m (0) cos lϕ ∂
y
θ

− kml Pl
m(0)l sin lϕ ∂ y

ϕ

∇Y c
ml(y)⊥ = kml Pl

m(0)l sin lϕ ∂
y
θ

− kml Pl′
m (0) cos lϕ ∂ y

ϕ

∇Y s
ml(y) = −kml Pl′

m (0) sin lϕ ∂
y
θ

+ kml Pl
m(0)l cos lϕ ∂ y

ϕ

∇Y s
ml(y)⊥ = −kml Pl

m(0)l cos lϕ ∂
y
θ

− kml Pl′
m (0) sin lϕ ∂ y

ϕ

Remark. Since Y00 is constant, its gradient vanishes,
and consequently there is no eigenvector for m = 0.

The explicit formula for Pm entails that Pl
m(0) = 0

when m −l is odd while Pl′
m (0) = 0 when m −l is even.

Thus Pl
m(0)Pl′

m (0) = 0 for all m and l. Finally we get,
for αx ∈ Tx S2,

K (x, y).αx =
∑
m≥1

1

m3(m + 1)3

m∑
l=0

βl
m cos lϕ

× (〈
αx , ∂

x
θ

〉
∂

y
θ + 〈

αx , ∂
x
ϕ

〉
∂ y
ϕ

)
.

The coefficients βl
m are

βl
m = k2

ml

(
Pl′

m (0)2 + l2 Pl
m(0)2

)
.

We find

βl
m =




2m + 1

4π

(
m!!

(m − 1)!!

)2

when l = 0, m odd

0 when l = 0, m even

2m + 1

2π

(m + l)!!

(m + l − 1)!!

(m − l)!!

(m − l − 1)!!
when

l �= 0, m + l odd

2m + 1

2π
l2 (m + l − 1)!!

(m + l)!!

(m − l − 1)!!

(m − l)!!
when l �= 0, m + l even

Note that in this special case, the parallel transport of
vector αx precisly writes: T (x, y)αx = (〈αx , ∂

x
θ 〉∂ y

θ +
〈αx , ∂

x
ϕ 〉∂ y

ϕ ). Therefore the above formula can be
written

K (x, y).αx = k(ϕ)T (x, y) . αx

where

k(ϕ) =
∑
l≥0

(∑
m≥l

βl
m

m3(m + 1)3

)
cos(lϕ).

k(ϕ) is a trigonometric series which can be computed
rapidly once its coefficients are stored. The eigenvalues
m2(m + 1)2 can be modified to adjust the smoothing
properties of the operator. This would only change the
coefficients of the function k.

Now in the general case, because of rotation invari-
ance, we can conclude that

K (x, y) = k(ψ(x, y))T (x, y).

B. Derivatives of the Reproducing Kernel

Here we compute the two partial coderivatives of
K (x, y) for every x, y ∈ S2, ηx ∈ Tx S2 and ηy ∈ Ty S2.
We have

K (x, y) = k(ψ)T (x, y)

∇ηx K (x, y) = k ′(ψ)
∂ψ

∂x
. ηx T (x, y)

+ k(ψ)∇ηx T (x, y).

Now we use the mutual basis (exy, fxy) and (eyx , fyx )
introduced before. First

∂ψ

∂x
. ηx = −〈ηx , exy〉 .= −ηe

x .

The parallel transport operator T (x, y) can be written:

T (x, y) = −e∗
xy ⊗ eyx − f ∗

xy ⊗ fyx .

We have also the following results (see annex C):

∇exy exy = ∇exy fxy = 0

∇exy eyx = ∇exy fyx = 0

∇ fxy exy = − cot ψ fxy

∇ fxy fxy = cot ψexy
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∇ fxy eyx = − 1

sin ψ
fyx

∇ fxy f yx = 1

sin ψ
eyx .

Consequently, ∇exy T (x, y) = 0 and

∇ fxy T (x, y) = −(∇ fxy exy)∗ ⊗ eyx − e∗
xy ⊗ ∇ fxy eyx

−(∇ fxy fxy)∗ ⊗ fyx − f ∗
xy ⊗ ∇ fxy f yx

=
(

cos ψ − 1

sin ψ

)
( f ∗

xy ⊗ eyx − e∗
xy ⊗ fyx )

=
(

cos ψ − 1

sin ψ

)
T (x, y)⊥

T (x, y)⊥ is the parallel transport T (x, y) composed
with a π/2-rotation on the tangent space at y:
T (x, y)⊥ = R(y)T (x, y)(also equal to T (x, y)R(x)).
Thus,

∇ηx K (x, y) = −ηe
x k ′(ψ)T (x, y)

+ η f
x k(ψ)

(
cos ψ − 1

sin ψ

)
T (x, y)⊥.

For ∇ηy K (x, y) we have ∇eyx T (x, y) = 0 and

∇ fyx T (x, y) = −(∇ fyx exy)∗ ⊗ eyx − e∗
xy ⊗ ∇ fyx eyx

−(∇ fyx fxy)∗ ⊗ fyx − f ∗
xy ⊗ ∇ fyx f yx

=
(

cos ψ − 1

sin ψ

)
(e∗

xy ⊗ fyx − f ∗
xy ⊗ eyx )

= −
(

cos ψ − 1

sin ψ

)
T (x, y)⊥.

and then

∇ηy K (x, y) = −ηe
yk ′(ψ)T (x, y) − η f

y k(ψ)

×
(

cos ψ − 1

sin ψ

)
T (x, y)⊥.

This could also have been deduced from the formula

K (x, y) = K (y, x)T

which implies

∇ηy K (x, y) = (∇ηy K (y, x)
)T

= −ηe
yk ′(ψ)T (y, x)T + η f

y k(ψ)

×
(

cos ψ − 1

sin ψ

)
(T (y, x)⊥)T .

Figure 12. Positions of points x and y.

But we have T (y, x)T = T (x, y) and (T (y, x)⊥)T =
(R(x)T (y, x))T = T (x, y)R(x)T = −T (x, y)R(x) =
−T (x, y)⊥; hence we get the same result.

C. Covariant Derivatives of the Mutual Basis

Computation in a special case. We must obtain the
coderivatives of the tangent vectors exy , fxy , eyx and
fyx with respect to exy and fxy , for every x, y ∈ S2.
Using the rotational invariance of these basis, we will
consider a special case. Let y be the North Pole, ie the
point (0, 0, 1) in cartesian coordinates, and x another
point with spherical coordinates (θ, ϕ), (eθ , eϕ) being
the orthonormal basis associated on Ty S2.

In cartesian coordinates we have:

exy = −eθ =

− cos(θ ) cos(ϕ)

− cos(θ ) sin(ϕ)
sin(θ )




fxy = −eϕ =

 sin(ϕ)

− cos(ϕ)
0




eyx =

 cos ϕ

sin ϕ

0


 fyx =


− sin ϕ

cos ϕ

0


 .

Now,

∂θexy =

 sin(θ) cos(ϕ)

sin(θ) sin(ϕ)
cos(θ )


 ⇒ ∇exy exy = ∇∂θ

exy = 0

∂θ fxy =

 0

0
0


 ⇒ ∇exy fxy = ∇∂θ

fxy = 0
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∂θeyx =

 0

0
0


 ⇒ ∇exy eyx = ∇∂θ

eyx = 0

∂θ fyx =

 0

0
0


 ⇒ ∇exy fyx = ∇∂θ

fyx = 0

and

∂ϕexy =

 cos(θ ) sin(ϕ)

− cos(θ ) cos(ϕ)
0


 ⇒ ∇ fxy exy

= − 1

sin θ
∇∂ϕ

exy = − cot θ fxy

∂ϕ fxy =

 cos(ϕ)

sin(ϕ)
0


 ⇒ ∇ fxy fxy

= − 1

sin θ
∇∂ϕ

fxy = cot θ fxy

∂ϕeyx =

− sin(ϕ)

cos(ϕ)
0


 ⇒ ∇ fxy eyx

= − 1

sin θ
∇∂ϕ

eyx = − 1

sin θ
fyx

∂ϕ fyx =

− cos(ϕ)

− sin(ϕ)
0


 ⇒ ∇ fxy f yx

= − 1

sin θ
∇∂ϕ

fyx = 1

sin θ
eyx .

General Case. Using rotational invariance property,
we deduce the formulae in the general case.

∇exy exy = 0 ∇ fxy exy = − cot ψxy fxy

∇exy fxy = 0 ∇ fxy fxy = cot ψxyexy

∇exy eyx = 0 ∇ fxy eyx = − 1

sin ψxy
fyx

∇exy fyx = 0 ∇ fxy f yx = 1

sin ψxy
eyx ,

where ψxy = ψ(x, y).
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Note

1. If v ∈ Tx S2, x, y ∈ S2 and α : [0, 1] → S2 is a smooth curve
on the sphere with α(0) = x and α(1) = y, then there exists a
unique vector field w along α with w(0) = v, w(t) ∈ Tα(t) S2

for all t , and the covariant derivative of w(t) equal to 0 for all t .
w(1) ∈ Ty S2 is said to be the parallel transport of v along α.
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