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Abstract. Studying large deformations with a Riemannian approach has been an efficient point of view to
generate metrics between deformable objects, and to provide accurate, non ambiguous and smooth matchings
between images. In this paper, we study the geodesics of such large deformation diffeomorphisms, and more
precisely, introduce a fundamental property that they satisfy, namely the conservation of momentum. This property
allows us to generate and store complex deformations with the help of one initial “momentum” which serves as the
initial state of a differential equation in the group of diffeomorphisms. Moreover, it is shown that this momentum
can be also used for describing a deformation of given visual structures, like points, contours or images, and
that, it has the same dimension as the described object, as a consequence of the normal momentum constraint we
introduce.

1. Introduction

Over the past several years we have been studying
natural shapes using homogeneous orbits of imagery
constructed via the action of transformation groups on
exemplars or templates. The mathematical structure of
group action as a model in image analysis has been pi-
oneered by Grenander [13], the idea being to introduce
the group actions in the very nature of the objects them-
selves, through the notion of deformable templates.
Roughly speaking, a deformable template simply is an
“object or exemplar” Itemp on which a group G acts

and generates, through the orbit J = G · Itemp, a whole
family of new objects. The interest of this approach is
to concentrate the modeling effort on the group G, and
not on the family of objects J .

Since the earliest introduction by Silicon Graphics
Incorporated of special purpose graphics hardware for
object rendering, group action as a model in image
analysis has been the subject of a wide range of re-
search in computer vision. Naturally, the analytical
and computational properties of the low-dimensional
matrix Lie groups form the core dogma of modern
Computer graphics. In sharp contrast, however, for the
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study of imagery generated from natural or biologi-
cal shapes, the finite dimensional matrix groups are
replaced by their infinite dimensional analogue, the
more general diffeomorphisms [7, 11, 16, 22, 23, 36].

The anatomical orbit or deformable template is made
into a metric space with a metric distance between el-
ements by constructing curves through the space of
diffeomorphisms connecting them; the length of the
curve becomes the basis for the construction, the metric
distance corresponding to the geodesic shortest length
curves. This gives rise to a natural variational prob-
lem describing the geodesic flows between elements
in the orbit, with the solution of the associated Euler-
Lagrange equations giving the optimal flow of diffeo-
morphisms and thus the metric between the shapes.
The obtained setting shares several similarities with
the mechanics of perfect fluids, for which the Euler-
Lagrange equation has been derived by Arnold (Eq.
(1) of [2]) for the group of divergence-free volume-
preserving diffeomorphisms. As well these results be-
come another example of the general Euler-Poincaré
principle of [19] applied to an infinite dimensional
setting.

Interestingly, as emphasized by Arnold [1] in his
study, one of the most beautiful aspects of studying
diffeomorphisms with a Lie group point of view is that
many fundamental aspects which can be proved in the
finite dimensional case can be formally extended to re-
trieve well-known equations of mechanics. One of the
purposes of this paper is to develop infinite dimensional
analogues, for the study of high dimensional shapes via
diffeomorphisms, of several of the well known proper-
ties of Lie groups in rigid body mechanics. In particular
we shall focus on the interpretation of the Euler equa-
tion as an expression of the evolution of the generalized
momentum of diffeomorphoc flow of least energy in
both Eulerian and Lagrangian coordinates.

Such a point of view will link our geodesic formula-
tion to a conservation of momentum law in Lagrangian
coordinates providing a powerful method for studying
and modeling diffeomorphic evolution of shape. It will
imply that the momentum of the diffeomorphic flow
at any place along the geodesic can be generated from
the momentum at the origin, thus providing the vehicle
for geodesic generation via shooting.

This same conservation of momentum of the dif-
feomorphic flow, allows us to derive equations for
the geodesic evolution of the elements in the orbit
It = I ◦ φ−1

t , t ∈ [0, 1], I ∈ J . This unifies various
geodesic evolutions associated with orbits of sparse fi-

nite dimensional landmarked shapes as well as the evo-
lutions of dense images. Of special interest is the fact
that for the special case of image matching, geodesic
evolution of elements in the orbit links us to the no-
tion of normal motion familiar to the rapidly growing
community working in level set methods. Interestingly,
as we show, the momentum of the diffeomorphic flow
is normal to the level sets associated with geodesic
motion. By solving the partial differential equations
which are associated with the conservation of momen-
tum, we will be able to control by specifying the ini-
tial conditions (within a specific class of momentum
which depends on the considered imaging problem) a
wide range of arbitrarily large deformations; this pro-
vides new possibilities for learning shape models of
deformable templates, or for designing new numerical
matching procedures.

This second point of view in terms of the conserva-
tion of momentum law also sheds new light on a large
number of high dimensional evolution based Active
Model Methods in Computer Vision, including active
snakes and contours [6, 12, 18, 20, 29, 31, 37, 40, 41,
43], active surfaces and deformable models [8, 9, 21,
24, 25, 28, 30, 33, 39, 40, 42]. In such approaches
vector fields are defined which give the boundary man-
ifold of the shape some velocity of motion, usually
following the gradient of an energy to form an attrac-
tive force to pull the boundary. The power of such
methods is that they parameterize motion only associ-
ated with a submanifold of the imagery, not the entire
extrinsic background space. For example, to deform a
planar simply connected shape via an active contour
method, the dimension of the motion is determined by
the dimension of the boundary of the region, which is
substantially less than the dimension of the plane. His-
torically such approaches have not been studied glob-
ally as diffeomorphic action. In fact it is well known
that such methods cannot prevent self intersection nor
ensure topological consistency, for which the addition
of other constraints become necessary [14, 15]. From
the conservation law in Lagrangian coordinates de-
scribing geodesic motion in the metric space of diffeo-
morphic action, we introduce the normal momentum
motion which constrains the momentum to the bound-
ing manifold, and extends the velocity of motion of the
shape to the entire background space, thereby giving
the global property that the resulting integrated vector
field generates a diffeomorphism on the entire extrin-
sic space. This in turn carries the smooth submanifold
diffeomorphically. As the analysis shows, this global
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property seems to be required to generate geodesic
motions.

2. The Basic Set Up

2.1. Right Invariant Metric on Group
of Diffeomorphisms

The basic component of our models is the group
of one-to-one, smooth, transformations (diffeomor-
phisms) of a bounded subset � ⊂ R

d . In this paper, we
consider diffeomorphisms emerging as flows of non-
autonomous differential equations. A time dependent
vector field on � is a function:

v : [0, 1] × � → R
d

(t, x) �→ v(t, x)

(v(t, x) will also be denoted vt (x)). The associated
ordinary differential equation is

dy

dt
= vt (y).

The flow of this ODE is a function φv which depends
on time and space, such that

∂φv

∂t
(t, x) = vt

(
φv

t (x)
)

and φ(0, x) = x for all x ∈ �. We will also use the
notation φv

t (x) for φ(t, x) and

φv−1
s = φv

t ◦ φv−1
s . (1)

It is well-known that, under some smoothness condi-
tions on v, such φv

t is at all times a diffeomorphism of
�.

The groups that we consider are precisely composed
with such flows φv

1 for v belonging to a specified func-
tional class. More precisely, we assume that a Hilbert
space g is given, the element of which being smooth
enough vector fields on �, and denote the norm and
inner product on this space by ‖ ‖g, 〈 , 〉g. We now de-
fine (following [35]) the group G as the set of functions
φv

1 for time-dependent vector fields v satisfying

∫ 1

0
‖vt‖g dt < ∞,

i.e. for v belonging to L1([0, 1], g). We will always
assume that g can be embedded in the space of

(C1
0 (�, R

d ), ‖ ‖1,∞), containing vector fields on �,
which vanish on ∂�, where

‖w‖1,∞ = ‖w‖∞ + ‖dw‖∞.

From this definition, it appears that the main ingredient
in the construction of G is the Hilbert space g.

Fixing v ∈ g, one can define the linear form w �→
〈v,w〉g , which will be denoted Lv. We therefore have
the identity

(Lv,w)
.= 〈v,w〉g

(we use the standard notation (M, w) for the linear
form M applied to w). By definition, Lv belongs to
the dual, g∗ of g, and L can be seen as an operator
L : g → g∗ (this is the canonical duality operator of g

on its dual). As we shall see, this operator turns out to
be a key feature in our analysis. For the moment, we
point out the fact that Lv is a linear form on g which
is a space of smooth vector fields. Therefore, Lv it-
self can be a singular object (a generalized function,
or a distribution). Here are a few examples of distri-
butions M which qualify as elements of g∗, under our
running assumption that g is embedded in the space of
C1 functions:

(i) L1 vector fields of �: if ψ : � �→ R
d is integrable,

define

(M, v) =
∫

�

〈ψ(x), v(x)〉Rd dx

(ii) Let now µ be any measure on �, and ψ be µ

integrable. Define

(M, v) =
∫

�

〈ψ(x), v(x)〉Rd dµ(x)

(iii) Dirac measures: as a particular case of the previ-
ous, define, for x ∈ � and a ∈ R

d ,

(M, v) = 〈a, v(x)〉Rd

This will be denoted M = δ∗
x (a) ∈ g∗.

(iv) Differential operators: if ( fi, j , 1 ≤ i, j ≤ d) are
integrable functions, define

(M, v) =
d∑

i, j=1

∫

�

fi j
∂vi

∂x j
dx
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It is important to notice that, although L is defined
in a rather abstract way in the previous lines, numer-
ical procedures to compute geodesics can be derived
most of the time from the knowledge of its inverse (of
Green kernel) K = L−1. This K is a smoothing kernel,
the choice of which, within a specific range of avail-
able kernels, being the starting point of any practical
procedure. We do not detail numerical algorithms in
this paper, but the reader can refer to [4, 5, 17, 23] for
examples of choices of K.

2.2. Energy and Momenta

Consider a time-dependent diffeomorphism v ∈
L1([0, 1], g), and let (φv

0t , t ∈ [0, 1]) be the associ-
ated flow, defined in the previous section. Along time,
each point x ∈ �, considered as a particle, evolves on
the trajectory t �→ φv

0t (x), its velocity at time t being by
definition vt (φv

0t (x)). In other terms, for y ∈ �, vt (y) is
the instantaneous velocity of the particle which is at y
at time t. It is called the Eulerian velocity at y at time t.

So, at each time, we have an Eulerian velocity field,
y �→ vt (y), and we define the kinetic energy of the
system to be E(vt ) = 1

2‖vt‖2
g. The total energy spent

during the deformation path now is

Etotal(v) = 1

2

∫ 1

0
‖vt‖2

g dt.

Note that, in classical fluid mechanics, the kinetic en-
ergy is the sum of particle kinetic energies, which, for
a homogeneous fluid with mass density given by ρ

yields

‖vt‖2 = ρ

2

∫

�

|vt (y)|2dy.

This is the L2 norm of v, which cannot be used in
our context, since we require that g is embedded in
C1

0 (we need some kind of Sobolev norms). However,
in analogy with standard mechanical systems, we may
define the global momentum of the system at time
t to be the linear form Mt ∈ g∗ such that E(vt ) =
(Mt , vt )/2, which, with the notation of the previous
section, yields.

Mt = Lvt .

So, if vt is the Eulerian velocity field at time t, the
momentum at time t is given by Lvt . It will be called
the momentum in Eulerian coordinates.

2.3. Lagrangian and Eulerian Frames

The Eulerian frame, as introduced above, describes
mechanical quantities as they are observed in the cur-
rent configuration at each time. The Lagrangian frame,
on the contrary, describes quantities as seen from the
initial configuration. For example, the diffeomorphism
φv

0t (x) provides the position at time t of the particle
which was at x at time 0, which is a Lagrangian no-
tion. For the velocity, we create a Lagrangian velocity
field by pulling back the previously defined velocity
vt , setting

vl
t (x) = d

ds

(
φ−1

t (φt+s(x))
)
|s=0,

i.e. vl
t = (dφt )

−1(vt ◦ φt ).

The operation

v �→ (dφ)v ◦ φ−1

defines a fundamental Lie group operation, and is
called the adjoint action of G on its Lie algebra (which
here is g), denoted Adφv. We have obtained the relation

vt = Adφt v
l
t .

To interpret the adjoint action pictorially, the new vec-
tor field under the adjoint action v → (dφ)v ◦ φ−1 has
to be interpreted as the transformation of v under the
deformation generated by φ. Figure 1 shows how the
field vl at location x is transported by the flow to the
value v(y) at location y = φ(x) by pushing forward
(using φ) the Lagrangian frame on which vl is drawn.
Note that the orientation of the vector v(x) drawn on
the deformed sheet is also changed (through the action
of (dφ)).

2.4. Momentum in Eulerian and Lagrangian
Coordinates

The momentum Mt = Lvt , which has been defined
in Eulerian coordinates, also admits a Lagrangian
version. It can be computed by expressing the kinetic
energy at time t, which is (Lvt , vt )/2, under the form
(Ml

t , v
l
t )/2, Ml

t , being then the Lagrangian momen-
tum. This is straightforward, since, by definition of an
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Figure 1. Here is represented the deformation obtained by pulling back the Eulerian frame associated with ve and represents pictorially the
adjoint action.

adjoint operator:

(Lvt , vt ) = (
Lvt , Adφt v

l
t

) = (
Ad∗

φt
Lvt , v

l
t

)
.

This leads to the definition Ml
t = Ad∗

φt
Lvt for the mo-

mentum in Lagrangian coordinates. The Lagrangian
frame takes here the role of a Galilean, or reference
frame, and we will retrieve below the fundamental
principle of mechanics, which states that the La-
grangian momentum is constant over time along any
energy minimizing path. Before this, we make a brief
interuption in our discussion to describe the relation
between the classical mechanics of a rigid body, and
geodesic equation in matrix Lie groups. This simple
description will help to understand the formalism in
our infinite dimensional group of diffeomorphisms.

3. Euler Equation and Conservation of the
Momentum for Lie Groups of Matrices

In this part, we derive the Euler equation for extremal
paths of the kinetic energy in the case of Lie groups
of matrices. This derivation is well-known in the con-
text of classical solid mechanics [1], but this simpler
case, which can be derived completly without too much
technicalities, may be helpful to understand the case of
diffeomorphisms.

Let G ⊂ Md (R) be a Lie group of d × d matrices
with Lie algebra g. The case of interest is when G is
a group of 3D rotations, which models the position of
a rigid body with fixed center of mass. In this case, g

is the vector space of antisymmetric 3 × 3 matrices.
Let t �→ gt be a trajectory in this group. Then, the
angular velocity at ∈ g is given by the equation dgt

dt =

gt at . This is to be related to our previous definition of
Eulerian velocity, which was

dφt

dt
= vt ◦ φt

in which the (left) product of matrices is replaced by
the (right) composition of functions.

Returning to the matrix case, we define the kinetic
energy at time t to be (Jat , at )/2, for some symmetric
positive definite operator J : g → g∗. In the case of
the rigid body, the angular velocity can be identified to
a 3-vector ωt , and J can be seen as a 3×3 matrix which
only depends on the geometry of the object, called the
inertia operator and, with some abuse of notation,

(Jat , at ) = (Jωt , ωt ).

(note that here the notation ( , ) refers to the sum of
products of coordinates, i.e. the usual inner product on
Euclidean spaces, after identification between g and
g∗). The total energy is

E(g) = 1

2

∫ 1

0
(Jat , at ) dt.

We retrieve again the analogy with the diffeomor-
phisms by letting

〈a, b〉g = (Ja, b)

so that J takes the role of L in the previous section.
We now compute the Euler equation for least energy

paths between two fixed endpoints g0 and g1. We recall
that the Lie bracket on g is [a, b] = ab − ba.



Miller, Trouvé and Younes

Theorem 1. The Euler-Lagrange equation for the
kinetic energy is given by

∂ Ja

∂t
− ad∗

a (Ja) = 0. (2)

where ad∗
a : g∗ → g∗ is defined by duality through the

equalities (ad∗
a f, b) = ( f, adab) = ( f, [a, b]).

Proof: Let (t �→ g0(t)) be an extremal curve for
the kinetic energy and ((t, h) �→ g(t, h)) be a smooth
deformation around h = 0 (g(t, 0) = g0(t)): Let a(t, h)
and A(t, h) be such that

∂g

∂t
= ga and

∂g

∂h
= g A. (3)

Writing ∂2g
∂t∂h = ∂2g

∂h∂t , we get g Aa + g ∂a
∂h = ga A + g ∂ A

∂t
i.e.

∂a

∂h
= ∂ A

∂t
+ [a, A] = ∂ A

∂t
+ ada A. (4)

The curve A(t, h) can vary freely in g, with boundary
conditions A(0, h) = A(1, h) = 0. From

d

dh

(∫
〈a, a〉gdt

)

|h=0

,

we get

∫ 〈
a,

∂ A

∂t
+ ada A

〉

g

dt =
∫ (

Ja,
∂ A

∂t
+ ada A

)
dt =0

(5)

Using the duality relation, we get (Ja, ada A) =
(ad∗

a(Ja), A) so that by integration by part, we finally
obtain the Euler equation

∂Ja

∂t
− ad∗

a(Ja) = 0 . (6)

�

We know from Lagrangian mechanics that the mo-
tion of a body with inertial operator J without external
forces are extremal paths of the kinetic energy. Hence,
Eq. (6) is the evolution equation of a body. We rec-
ognize in this equation the momentum to the body
Mb

t
.= Jat and the Euler equation is then:

∂ Mb

∂t
− ad∗

a(Mb) = 0. (7)

The momentum in the body here is to relate to the mo-
mentum in Eulerian coordinates for diffeomorphisms.
However, if we study the motion of the body in a fixed
static reference frame, the momentum to the space de-
noted here Ms should remain constant in the absence of
external forces. The momentum to the space is defined
from Mb

t by a change of reference frame:

Mb
t

.= Ad∗
g−1

t

(
Mb

t

)
(8)

where Ad∗
g is the co-adjoint representation which is

defined by duality through the equalities: (Ad∗
g f, b) =

( f, Adgb) = ( f, gbg−1). We derive from the evolution
equation for Mb, given by the Euler equation (7), the
conservation of the momentum to the space Ms :

Theorem 2. Along extremal curves for the kinetic
energy, Ms is constant:

d Ms

dt
= 0. (9)

Proof: Indeed, we have

(
d Ms

t

dt
, b

)
= d

dt

(
Ms

t , b
) = d

dt

(
Jat , Adg−1

t
b
)

Since, d
dt

(
Adg−1

t

) = −adat Adg−1
t

, we get finally using
Euler Eq. (6),

(
d Ms

t

dt
, b

)
=

(
∂ Ja

∂t
− ad∗

a(Ja), Adg−1
t

b

)

= 0. (10)
�

Thus, from the conservation of the momentum to the
space, Ms

t ≡ Ms
0 , we deduce that

Jat = Ad∗
gt

(La0), (11)

or equivalenty, for any b ∈ g:

(Jat , b) = (
Ja0, Adgt b

)
(12)

These results are in fact true for any Lie-group with
a left-invariant metric. As we now investigate, they can
be formally extrapolated also for infinite dimensional
groups of diffeomorphisms.
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4. Geodesic Evolution of the Diffeomorphism
and Conservation of Momentum

4.1. Euler Equation as Evolution Equation for the
Momentum in Eulerian Coordinates

The derivation of the Euler equation for extremal paths
of the kinetic energy in the case of finite-dimensional
Lie groups can be carried out in full generality within
the Lie theory framework, to lead to the law of con-
servation of momentum. A general computation can be
found in [1]. In our infinite dimensional case, a rigorous
derivation of this law is much harder, and must most
of the time be obtained directly from variational and
functional analysis arguments rather than with purely
algebraic Lie group derivations. However, it is inter-
esting, and quite informative, to use these derivations
to obtain a formal proof of the conservation of mo-
mentum, without wondering too much about the well-
posedness of the expressions. This will be done in the
next paragraphs.

The first Euler equation provides the variations of
the momentum in Eulerian coordinates. Before stating
it, we need some definitions:

Definition 1. The adjoint action Ad of G on g and
the associated adjoint action ad of g on itself are given
with their dual operators Ad∗, ad∗ by

Adφw = (dφ)w ◦ φ−1,

(Ad∗
φ f, w) = ( f, Adφw) (13)

advw = [v,w] = (dv)w − (dw)v ,

(ad∗
v f, w) = ( f, advw). (14)

with φ ∈ G, w ∈ g, f ∈ g∗.

Already at this point, one can point out the difficulty
of the infinite dimensional problem: at the difference
with the matrix case, if v, w belong to g, it cannot
be guaranteed that it is still so for [w, v] = (dw)v −
(dv)w: in situations of interest, g is, in fact, not a Lie
algebra: Adφw and advw do not necessarily belong to
g. As a consequence, the definition of ad∗

v f which has
been given cannot hold without some restriction on f,
in order to be able to extend it to vector fields which
are brackets of elements of g. We however proceed
with such formal computation without addressing these
issues.

The geodesics are extremal curves for the kinetic
energy. They satisfy an Euler equation giving the vari-

ation of the momentum in terms of the co-adjoint action
operator on the momentum.

Statement 1. The Euler equation for the kinetic en-
ergy is given by

d Lv

dt
+ ad∗

v (Lv) = 0. (15)

When Lv ∈ H (i.e. it is a function), one has

ad∗
v Lv = div(Lv ⊗ v) + dv∗Lv. (16)

where div(u ⊗ v) = duv + div(v)u.
These equations, which are derived below, are spe-

cial cases of the Euler-Poincaré principle, described,
for example in [19]. Equation (15) is formally identical
to Eq. (2) in the matrix case, excepted for a sign differ-
ence arising from the switch from a left-invariance in
the matrix case to a right-invariance in the diffeomor-
phism case.

Formal Justification. This is exactly as in the ma-
trix case. Here again, let (t �→ φt ) be extremal
and ((t, ε) �→ φt,ε) be a smooth deformation around
ε = 0, with the abuse of notation φt,0 = φt . Denote
∂φt,ε

∂t = vt,ε ◦ φt,ε,
∂φt,ε

∂ε
= ηt,ε ◦ φt,ε,

∂vt,ε

∂ε
= ht,ε, still

denoting vt,0 = vt , ηt,0 = ηt and ht,0 = ht . Our first
step is to express ht in function of the other variables.
For this, write

∂2φ

∂ε∂t
= ∂2φ

∂t∂ε

which yields

ht ◦ φt + dφt vtηt ◦ φt = ∂ηt

∂t
◦ φt + dφtηtvt ◦ φt

or (applying φ−1
t on the right to both terms) gives

ht = ∂ηt

∂t
+ dηtvt − dvtηt = ∂ηt

∂t
+ [ηt , vt ].

The1 first variation of the energy is given by

d

dε

∫ 1

0
‖vt,ε‖2

gdt

= 2
∫ 1

0
〈vt , ht 〉gdt
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=
∫ 1

0

〈
vt ,

dηt

dt
+ [ηt , vt ]

〉

g

dt

=
∫ 1

0

(
Lvt ,

dηt

dt

)
dt −

∫ 1

0
(Lvt , advt ηt )dt.

Since φt is extremal, this expression vanishes for all
η (with η0 = η1 = 0), and a last integration by parts
yields

d Lvt

dt
+ ad∗

vt
Lvt = 0,

which is Eq. (15).
We now prove Eq. (16) under the assumption that

Lv is a function. By definition

(ad∗
v Lv,w) = (Lv, dvw − dwv)

= (dv∗Lv,w) − (Lv, dwv)

and the conclusion comes from Stokes’ theorem which
states that (since v and w vanish on ∂�)

(div(Lv ⊗ v), w) = −(Lv, dw.v).

It appears that the Euler equation (15) with ad∗
v Lv =

div vLv + dv∗Lv has been derived in [26] and subse-
quently [22] directly as the Euler-Lagrange equation
for the kinetic energy by analytical means. This has
been originally proved by Arnold in [3] for the mo-
tion of impressible fluid which corresponds to the case
L = Id with the constraint div v = 0.

4.2. Conservation of Momentum in Lagrangian
Coordinates

The Euler equation (15) is the evolution of the mo-
mentum in Eulerian coordinates. We recognize in this
equation the momentum Mt

.= Lvt ; the momentum
in Eulerian coordinates evolves in time so as to bal-
ance the co-adjoint of the momentum thereby satisfy-
ing the associated Euler equation d Mt

dt + ad∗
vt

(Mt ) = 0
for extremal paths. However, the momentum in La-
grangian coordinates, identified in the introduction as
Ml

t = Ad∗
φt

(Mt ), remains constant in the absence of
external forces, d

dt Ml
t = 0.

Statement 2. Along extremal curves for the kinetic
energy, Ml

t is constant:

d Ml
t

dt
= 0. (17)

In particular, we have for all w ∈ g,

(Lvt , w) = (Lv0, (dφt )
−1w ◦ φt ). (18)

Formal Derivation. Indeed, fix w ∈ g and let f (ε) =
(Ml

t+ε, w). We have, on the first hand f ′(0) =
( d Ml

t
dt , w), and on the second hand (derivatives being

evaluated at time ε = 0)

f ′(0) = d

dε
(Lvt+ε,Adφt+ε

w)

=
(

d Lvt

dt
, Adφt w

)
+

(
Lvt ,

d

dε
Adφt+ε

w

)

Note here that Adφ◦φ′ = AdφAdφ′ . Now, if φ0 = id
and dφε

dε
= v at ε = 0, we have for any w′,

d

dε

(
Adφε

w′)|ε=0 = d

dε

(
(dφε)w′ ◦ φ−1

ε

)|ε=0

= dv(w′) − dw′(v) = advw
′. (19)

Applying this to w′ = Adφt−1 w and v = vt , we get

f ′(0) =
(

d Lvt

dt
, Adφt w

)
+ (Lvt , advt Adφt w)

=
(

d Lvt

dt
+ ad∗

vt
, Adφt w

)
= 0

by Eq. (15). This completes the proof,

(
d Ml

t

dt
, w

)
= 0.

Although the conservation of momentum has only
been derived from formal arguments, we can check
that, when it is satisfied, the generated deformation
paths do provide extremal curves of the kinetic energy.
The perturbation of the end point of the path (φv

0t , t ∈
[0, 1]) at time 1 under a perturbation vε

t of vt is given
by [22]:

d

dε
φvε

01(x) =
∫ 1

0
dφv

0s
φv

s1

(
hs ◦ φv

0s

)
ds. (20)
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with hs(x) = dvε
s (x)
dε

, the derivative being taken at ε = 0
(we have used the notation of Eq. (1)). Assume that
this expression vanishes (so that the end point φvε

01 re-
mains unchanged). The first variation of the kinetic
energy is given by

∫ 1
0 〈vt , ht 〉Ldt = ∫ 1

0 (Lvt , ht )dt =∫ 1
0 (Lv0, dφ0t φt0vt ◦ φ0t )dt . Now, using (20) and the

fact that dφ0t φt1 = dφ00φ01dφ0t φt0, we get easily that∫ 1
0 dφ0t φt0vt ◦ φ0t dt = 0 so that, by linearity,

∫ 1

0
〈vt , ht 〉Ldt =

(
Lv0,

∫ 1

0
dφ0t φt0ht ◦ φ0t dt

)
= 0.

(21)

4.3. Coadjoint Transport of Structures Along
a Geodesic

For M ∈ g∗, the evolution t �→ Ad∗
φ−1

t
M is called coad-

joint transport. The fact that the momentum evolves by
coadjoint transport along a geodesic implies the conser-
vation of several properties whenever they are initially
true, for Lv0. These properties will turn out to be of
main importance for image processing applications.

In this section, we assume that M0 = Lv0 is
given, and that the coadjoint transport Mt = Lvt =
Ad∗

φt0
(M0) is well defined at all considered times.

4.3.1. Coadjoint Evolution of the Support. Let
Supp(M) denote the support of a momentum M ∈ g∗.
It is defined by the complementary of the union of all
open sets �′ ⊂ � which are such that (M, w) = 0
whenever w ∈ g vanishes outside �′. We have the
property:

Statement 3. If Mt = Ad∗
φt0

(M0), then

Supp(Mt ) = φv
0t (Supp(M0))

Indeed, assume that M0 vanishes �′ ⊂ �. Let w

have its support included in φ0t (�′). Then (Mt , w) =
(M0, (dφ0t )−1w ◦ φ0t and w ◦ φ0t vanishes outside �′,
which implies that (Mt , w) = 0. Thus Supp(Mt ) ⊂
φ0t (Supp(M0)), and the reverse inclusion is true by
inverting the roles of M0 and Mt.

As a first example, consider the case when M0 is
finitely supported, and more precisely a sum of Dirac
measures. This is legitimate since our hypotheses on L
imply that Dirac measures belong to g∗, therefore have

the form Lv0 for some v0 ∈ g. So, we assume that

(M0, w) =
∑

i

〈ai , w(xi )〉Rd , (22)

where (xi )1≤i≤n is a finite family of points in � (land-
marks) and (ai )1≤i≤n is a finite family of vectors in R

d .
We write M0 = ∑n

i=1 δ∗
xi

ai , where, by definition

δ∗
x a : g → R

(23)
w �→ 〈a, w(x)〉

Denoting xi (t)
.= φt (xi ), we obtain the fact that Mt

is supported on {x1(t), . . . , xN (t)}. More precisely, a
rapid computation shows that

Mt =
n∑

i=1

δ∗
xi (t)ai (t) (24)

with

ai (t) = (
dxi (t)φt0

)∗
ai (25)

so that the momentum remains a sum of Dirac mea-
sures. This is a special case of the property considered
in the next section.

4.3.2. Coadjoint Transport of Measure. Measure-
based momenta are given by

(M, w) =
∫

�

〈ν0, w〉dµ0 (26)

where µ0 is a measure on � and ν0 is measurable and
µ0-integrable. They generate a large class of geodesic
evolutions, and have the attractive property that the
momentum Lvt can be explicitly computed from the
momentum at the origin.

Statement 4. Assume that (M0, w) = ∫
�
〈ν0, w〉dµ0

then the linear momentum functional evolves accord-
ing to

(Mt , w) =
∫

�

〈νt , w〉Rd dµt where

νt (x) = (dxφt0)∗ν0 ◦ φt0(x), µt
.= µ ◦ φt0 , (27)

i.e. µt (A) = µ(φt0(A)) for any measurable set A.
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The statement follows straightforwardly from the
substitutions

(Mt , w) =
∫

�

〈
ν0(x), ((dφ0t )

−1w ◦ φ0t )(x)
〉
Rd dµ(x)

=
∫

�

〈
dφ0t (x)φ∗

t0ν0(x), w ◦ φ0t (x)
〉
Rd dµ0(x)

=
∫

�

〈νt (x), w(x)〉Rd dµt (x) (28)

Point-supported momentum evolution considered in
the previous section, clearly is a particular case of this
statement. As another illustration, consider the case of
measures which are supported by submanifolds of �.
In this case, the initial momentum is concentrated along
the boundary �0 of a k-dimensional C1 sub-manifold
in � ⊂ R

d .
Let σ 0 by the surface measure (given as the induced

volume form on the sub-manifold) and let µ0 be sup-
ported by �0, such that for any smooth function on
�,

∫
�

f dµ0 = ∫
�0

f α0dσ0 for some density α0 (not
necessary positive) on the surface. Let ν0 : � → R

d

(the values of ν0 outside �0 will not be important) and
define

(Lv0, w) =
∫

�0

〈ν0, w〉Rd α0dσ0. (29)

Using Statements 3 and 4, we get that the tranported
measure µt is located on the transported sub-manifold
�t

.= φt (�0) (whose smoothness is preserved by the
regularity of the diffeomorphisms in G) and can be
written as µt = αtσt where σt is the k-dimensional vol-
ume measure on �t . Moreover, if νt = d(φt0)∗γ0 ◦φt0,
Statement 4 gives us the evolution of the momentum

(Lvt , w) =
∫

�t

〈νt , w〉αt dσt (y). (30)

In the case where the sub-manifold is � itself, then
σt = σ0 is the Lebesgue’s measure λ on �, and αt =
α0 ◦ φt,0|dφt,0|.

4.3.3. Coadjoint Transport of Orthogonality. The
last property transported by geodesic evolution which
is considered here is the normality with respect to a
smooth submanifold of �. Since normality will be ex-
tensively studied in the next section, we here provide
an illustration in a particular case.

Assume that ν0, in Eq. (26) can be expressed as

ν0 =
r∑

i=1

bi
0∇ f i

0 (31)

where (bi
0)1≤i≤r and ( f i

0 ) are two families of functions
on � and 1 ≤ r ≤ d. Then, we get from Statement 4
that

νt =
r∑

i=1

bi
t ∇ f i

t (32)

where bi
t = bi

0 ◦ φt,0 and f i
t = f i

0 ◦ φt,0. Equa-
tion (32) can be interpreted as a normality property
of the geodesic motion under initial condition (31).
Indeed, let

�0 =
r⋂

i=1

(
f i
0

)−1
({0}).

Assume that �0 is not empty and denotes N0(x) =
Span{∇ f i

0 (x) | 1 ≤ i ≤ r} for any x ∈ �0. Under
appropriate transversality conditions, mainly

r ≡ dim N0,

�0 can be equipped with a structure of (d − r )-
dimensional C1 manifold and N0(x) is exactly the
space of vectors normal to � at location x.

We then deduce easily that

�t =
r⋂

i=1

(
f i
t

)−1
({0})

and equality (32) implies for any x ∈ �t

νt (x) ∈ Nt (x) (33)

where Nt (x) = Span{∇ f i
t (x) | 1 ≤ i ≤ r} is the set of

normal vectors to �t at location x.
We deduce that if the momentum is normal to

some k-dimensional sub-manifold �0, this normality
property is preserved by coadjoint transport along a
geodesic.

In the case of r = 1 and f 1
0 = f0, �0 is exactly the

level set for threshold value 0 of f0 and the normality
of the initial momentum to the level sets is preserved
under geodesic motion. Since the threshold value is
arbitrary, we deduce that the property is true for all
level sets.
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5. The Normal Momentum Motion Constraint

5.1. Heuristic Analysis

The conservation of momentum is a general property
of geodesics in a group of diffeomorphisms with a right
invariant metric. More can be said in the situation when
diffeomorphisms are associated to deformations of ge-
ometric structures or images, which is the situation
of interest for our applications. In this setting we are
still looking for curves with shortest length in G, but
we partially relax the fixed end-point condition by the
constraint that the initial template is correctly mapped
to the target: because there is a whole range of diffeo-
morphisms which deform one given structure into an-
other, this condition is weaker than the fixed end-point
condition, which means that there are more degrees of
freedom for the optimization, and therefore more con-
straints on the minimum. For image matching, these
additional constraints may essentially be summarized
by the statement the momentum along the geodesic
path is at all times normal to the level sets of the image.
This is what we call the normal momentum constraint,
which is described in this section.

We start with a heuristic analysis, for which I0, the
image, is a smooth function defined on �. Let I1 be
in the orbit of I0 for the group G of diffeomorphisms:
there exists ψ ∈ G such that I0 ◦ψ−1 = It . By com-
pactness and semi-continuity arguments, one can prove
the existence of a geodesic path φ = (φt ) such that

dG(Id, φ1) = inf
ϕ∈G

dG(Id, ϕ) and I0 = I1 ◦ ϕ. (34)

Let φ = (φv
t ) be such a solution and consider a first or-

der expansion around t = 0, φt (x) � x + tv0(x) so that
It = I0 ◦ φ−1

t (x) � I0−t〈∇ I0, v0〉Rd . By definition, the
cost to go from I0 to It is (still at first order) t |v0|L . How-
ever, any u ∈ g such that 〈∇ I0, u〉Rd = 〈∇ I0, v0〉Rd , will
lead to the same It so that the least deformation cost
from I0 to It should be t |pI0 (v0)| where pI0 (v0) the
unique solution of the minimization problem:

(P0) : inf
u∈g

|u|L subject to :

〈(v0 − u)(x), ∇ I0(x)〉Rd = 0, ∀x ∈ � (35)

Since
(
φv

t

)
is a geodesic path minimizing the deforma-

tion cost from I0 to I1, it minimizes also the deforma-
tion cost from I0 to It yielding

v0 = pI0 (v0). (36)

Introduce the set gI0 = {h ∈ g | 〈∇ I0(x), h(x)〉Rd =
0,∀x ∈ �}: the constraints in P0 can be restated as
u − v0 ∈ gI0 so that pI0 (v) is the orthogonal projec-
tion of v on g⊥

I0
, the space orthogonal to gI0. Hence,

equality (36), translates to

∀h ∈ g such that for all x ∈ �, 〈∇ I0(x), h(x)〉 = 0,

we have 〈v0, h〉L = 0. (37)

Now, the fact that 〈∇ I0(x), h(x)〉 ≡ 0 means that h is a
vector field which is tangent to the level sets of I0, and
since 〈v0, h〉L = (Lv0, h), we see that Lv0 vanishes
when applied to any such vector field, or, that Lv0 is a
linear form which is normal to the level sets of I0.

5.2. Rigorous Result

We now pass to a rigorous derivation of this property.
Since it will be interesting to also consider images
which are not smooth, we provide a new definition of
the set gI0 . Obviously, when I0 is smooth, h ∈ gI0 is
equivalent to the fact that, for any function f which is
C1 on �, one has

∫

�

〈∇x I0, h(x)〉Rk f (x)dx = 0.

Applying the divergence theorem (we assume that ∂�

is smooth enough and take advantage on the fact that
elements of g vanish on ∂�), we get

−
∫

�

I0(x) div(h f )(x)dx = 0.

Since this has a meaning when I0 ∈ L2(�), we now
define

Definition 2. When I ∈ L2(�), we denote

gI = {h ∈ g : 〈I, div(h f )〉L2 = 0 for all f ∈ C1(�)}.

We still denote by pI the orthogonal projection on
g⊥

I . The group G is assumed to be built as described in
Section 2.1 (in particular g is continuously embedded
in C1(�, R

d )).

Theorem 3. (Normal Momentum Constraint). As-
sume that I0 ∈ L2(�) and let φ = (φv

t ) be a geodesic
path solution of (34). Then, for almost all t ∈ [0, 1]

vt ∈ g⊥
It
.
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The proof is given in Appendix A.

5.3. Examples

Consider again the case of smooth I, so that the con-
dition h ∈ gI is equivalent to h ∈ g and for all
x ∈ �, 〈∇x I, h(x)〉Rd = 0. Using notation (23), we
get that 〈∇ I0(x), h(x)〉Rd = 〈δ∗

x (∇ I0(x)), h〉L so that
gI0 = (Span{δ∗

x (∇ I0(x)) | x ∈ �})⊥ and finally,

g⊥
I = Span{δ∗

x (∇ I (x)) | x ∈ �}. (38)

Vector fields v such that

(Lv, u) =
∫

�

〈ν(x), u(x)〉Rd dµ(x), (39)

where ν is normal2 to the level sets of I belong to g⊥
I

and it can be shown that they form a dense subset.
For non-smooth I, we can similarly introduce

ωf (I), as the unique element of g such that, for
h ∈ V, 〈ω f (I ), h〉 = 〈I, div(h f )〉L2(�), and conclude
that

g⊥
I = Span{ω f (I ) | f ∈ C1(�, R)}. (40)

This implies that any element v ∈ gI is such that Lv

can be expressed as a limit

(Lv, u) = lim
N→∞

∫

�

I (x)div(u fN )(x)dx

where fN ∈ C1(�, R). The particular case when I
is the indicator function of a smooth domain B ⊂ �

(which can be interpreted as a smooth shape) is quite
interesting. For x ∈ ∂ B, let ν(x) be the outward normal
to ∂� and denote σ B be the uniform measure on ∂B.
Then
∫

�

I (x)div(u f )(x)dx =
∫

B
div(u f )(x)dx

=
∫

∂ B
f (x)〈u(x), ν(x)〉Rd dσB(x).

In this case, we obtain a dense subspace of gI by con-
sidering elements v ∈ g such that

(Lv, u) =
∫

∂ B
〈v(x), u(x)〉Rd dµ(x). (41)

for some measure µ on ∂B (the boundary of the shape).

Remark. We close this section with a technical, but
important, remark. We have called normal momentum
constraint the property that vt ⊥ gIt at almost all times.
We have shown that this property is always true for
geodesics minimizing (34). But there is another im-
portant issue, which is how much it constrains vt , or,
in other terms, how big gI is for a given image I. That
this is relevant, and sometimes non-trivial, may be seen
from the following example: assume that we are in 2
dimensions (d = 2) and that I is a C1 image, with a
non-vanishing gradient, at least on a dense subset of
�. Then, on any point x such that ∇x I �= 0, we can de-
fine in a unique way a positively oriented orthonormal
frame (τ (x), ν(x)) such that ν(x) = ∇x I/|∇x I |. Then,
if h ∈ gI and h(x) �= 0, we must have h/|h| = ±τ

in a small ball around x. Now h, as an element of g

must be smooth (depending on the choice made for L,
and h/|h| has the same smoothness as h: this is impos-
sible to achieve when τ itself is not smooth enough,
which in such a case forces h(x) = 0. We thus get
the property that h vanishes whenever τ (x) does not
meet the smoothness requirements of g, which may
very well be everywhere on � (or on a dense subset,
which is the same since h is continous), in which case
gI = {0} and the constraint is void, contrary to our
intuition that the momentum should be aligned with ν.
We see that, for the constraint to really be effective, we
need some smoothness requirement on I. Fortunately,
as illustrated by the example above, this smoothness
is only required for the level sets of I, which must
have a smooth boundary. With such an assumption, for
example, one can show that if v⊥ gI and

(Lv, u) =
∫

�

〈ξ (x), u(x)〉dµ(x)

for some measure µ on � and some vector field on ξ

�, then ξ must be (µ-almost everywhere) orthogonal
to the level sets of I. From a practical point of view
smoothness of level sets may easily be obtained using
algorithms such as mean curvature motion ([27]).

5.4. Conservation and Normality Property Check
for Inexact Matching

Here, we give a brief account of situations in which
proofs of conservation of momentum and the normality
property can be carried on in a well-defined context,
and retrieve the evolutions described in the previous
section.
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It is hard to make rigorous, in full generality, the vari-
ational argument we have used in the proof of Eq. (15).
Notice that the well-definiteness of the conservation of
momentum Eq. (17) is an issue by itself, since, when
w ∈ g, and φt is the diffeomorphism generated by a
geodesic, there is a priori no reason for (dφt )−1w ◦ φt

to belong to g: one must be able to define Lv0 on
spaces which are bigger than g, which means that Lv0

needs to be somewhat smoother (as a distribution) than
a generic element of g∗.

However, there is a setting in which such a fact is
true and easy to obtain: it is when the search for the
geodesic is done with an approximation of the tar-
get, with some L2 penalty term added to control the
error. We summarize this setting in the case of land-
mark matching, shape matching and image matching.
In these three situations, we will retrieve the coadjoint
transport of measure-based momenta. In all cases, re-
sults in [11, 35] ensure the existence of minimizers of
the variational problem.

5.4.1. Inexact Landmark Matching. In this section,
we assume that a measured space (J , ρ), together with
two measurable functions x, y : J → � are given.
The diffeomorphism φ is searched to minimize

U (φ) = E(φ) + 1

σ 2

∫

J
|yi − φ(xi )|2dρ(i)

When ρ is discrete, this relates to point-based match-
ing, x representing the landmark original positions and
y giving the landmark target positions. If we express U
in function of v, this requires the minimization of

Ũ (v) =
∫ 1

0
‖vt‖2

Ldt + 1

σ 2

∫

J
|yi − φv

01(xi )|2dρ(i)

The main point here is to notice that the optimal solu-
tion v generates a geodesic in G between id and φv

1 .

Proposition 1. Denote δ∗
x a the linear form on g such

that (δ∗
x a, v) = 〈a, v(x)〉. Let v be a minimizer of Ũ.

Then, letting xi (t) = φv
0t (xi )

Lvt =− 1

σ 2

∫

J
δ∗

xi (t)

[(
dxi (t)φ

v
t1

)∗
(yi −xi (1))

]
dρ(i)

(42)

Proof: The proof of this result is a direct conse-
quence of the identity, valid for s, t ∈ [0, 1], v, h ∈

L2([0, 1], g),

d

dε
φv+εh

st (x)

∣∣∣∣
ε=0

=
∫ t

s
dφv

su
φv

ut

(
hu ◦ φv

su

)
du. (43)

the proof of which being carried on with usual ODE
arguments and being omitted here. It is then straight-
forward to obtain (42), using the definition of the linear
forms δ∗

x a, for x ∈ � and a ∈ R
d . �

Equation (42) is a conservation of momentum equa-
tion for

Lv0 = − 1

σ 2

∫

J
δ∗

xi

[(
dxi φ

v
01

)∗
(yi − xi (1))

]
dρ(i).

When J is finite, this is equation (31) with ai =
− 1

σ 2

(
dxi φ

v
01

)∗
(yi − xi (1)). Equation (42) now is ex-

actly (24), since

ai (t) = (
dxi (t)φ

v
t0

)∗
ai

= − 1

σ 2

[
dxi (0)φ

v
01dxi (t)φ

v
t,0

]∗
(yi − xi (1))

= − 1

σ 2

(
dxi (t)φ

v
t1

)∗
(yi − xi (1))

5.4.2. Inexact Shape Matching. We now consider
the comparison of a binary set-indicator function, I0 =
1�0 (�0 ⊂ � having smooth boundaries) and a smooth
function I1, through the minimization of

U (φ) = E(φ) + 1

σ 2

∫

�

|1�0 ◦ φ−1(x) − I1(x)|2dx

over GL. We have

Proposition 2. Let v be a minimizer of U (φv
01) over

L2([0, 1], g). Then

Lvt = 1

σ 2

∫

∂�1

(
1

2
− I1

)
δ∗
φv

1t (x)

[(
dφv

1t
φv

t1

)∗
ν1

]
dσ1(x)

(44)

where �1 = φv
01(�0), ν1 is the outward normal to ∂�1

and σ 1 is the volume measure on ∂ �1.

Proof: Taking a variation v + εh, the main issue is
to compute the derivative of

1

2

∫

�

|1�0 ◦ φv+εh
10 (x) − I1(x)|2dx
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This integral can be rewritten

∫

�v+εh
01 (�0)

(
1

2
− I1(x)

)
dx + 1

2

∫

�

|I1(x)|2dx

Since the last term is constant, we see that the prob-
lem boils down to the computation of the derivative of
the first term, which can be written, after a change of
variable and letting f1 = 1/2 − I1,

∫

�0

f1 ◦ φv+εh
01 (x)

∣∣dxφ
v+εh
01

∣∣ dx

Define u by u◦φv
01(x) = d

dε
φv+εh

01 (x). Simple computa-
tions, which can be, for example, found in [10], yields
the fact that

d

dε

∫

�0

f1 ◦ φv+εh
01 (x)

∣∣dxφ
v+εh
01

∣∣ dx =
∫

�1

div( f1u)dx

Now the conclusion is a direct consequence of Eq. (43)
and of the divergence theorem. �

Here again, one straighforwardly checks that the
conservation of momentum is satisfied. We have in
particular

(Lv0, w) = 1

σ 2

∫

∂�1

(
1

2
− I1

)

〈(
dφv

10
φv

01

)∗
ν1, w ◦ φv

10(x)
〉
dσ1(x)

Letting µ0 = φv
01(σ1), and ν0(x) = (dxφ

v
01)∗ν1 ◦φv

10(x)
this can be rewritten

(Lv0, w) = 1

σ 2

∫

∂�0

(
1

2
− I1 ◦ φv

01(x)

)
〈ν0, w〉dµ0(x)

which is under the general form of a measure-based
momentum.

5.4.3. Inexact Image Matching. In this section, we
let I0 and I1 be two smooth enough (say C1) functions
defined on � (images). We consider the image match-
ing problem which corresponds to minimizing, over G,

U (φ) = E(φ) + 1

σ 2

∫

�

|I0 ◦ φ−1(x) − I1(x)|2dx

This problem is equivalent to minimizing

∫ 1

0
‖vt‖2

Ldt + 1

σ 2

∫

�

∣
∣I0 ◦ (

φv
01

)−1
(x) − I1(x)

∣
∣2

dx

This matching problem has been studied, in partic-
ular in [4], to show that the optimal solution should
satisfy, at each time t,

Lvt = − 1

σ 2

∣∣dφv
t,1

∣∣(I v
0t − I v

1t

)∇ I v
0t (45)

in which we have introduced the notation: I v
0t = I0 ◦

φv
t0, I v

1t = I1 ◦ �v
t1, and |dφ| for the Jacobian of φ.

This equation is in fact an equation of conservation of
momentum, with

Lv0 = − 1

σ 2

∣∣dφv
01

∣∣(I0 − I v
10

)∇ I0

as can be deduced from Eq. (30), with α =
− 1

σ 2 |dφv
01|(I0 − I v

10). Moreover, we can check also the
normality property (31) which holds here with with
r = 1 and f0 = I0. This allows us to conclude that
for the geodesic path in the image space generated by
inexact matching, the lifting of the path in G defines a
geodesic for which the momentum stays normal to the
level sets of the current image I0 ◦ φt,0 at time t.

6. Geodesic Evolution in the Orbit

Thus far we have concentrated on the evolution of
the flow of diffeomorphisms and its conservation of
momentum. For all of our image understanding work
we use the flow (φt , t ∈ [0, 1]) to act on the elements
in the orbits J of a given template I = Itemp. Now we
examine the geodesic flows in the orbit {It = I ◦φt , t ∈
[0, 1]}, I ∈ J , and provide the associated evolution
equations.

6.1. Geodesic Evolution Equation of Landmark
Points

Here we examine the finite dimensional landmark orbit
denoted Jn , consisting of n-shapes IN = (x1, . . . , xn),
each landmark (xi )1≤i≤n is in � ⊂ R

d ; correspondingly
(ai )1≤i≤n are a finite family of vectors in R

d . Denoting
by xi (t)

.= φt (xi ), the trajectory in � of the point xi

under the flow φt gives

Lvt =
n∑

i=1

δ∗
xi (t)ai (t), (46)
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where ai (t) = (dxi (t)φt,0)∗ai . From the identity

d

dt

((
dxi (t)φt,0

)∗) = −dxi (t)v
∗
t

(
dxi (t)φt,0

)∗
, (47)

we deduce that dai
dt (t) + (dxi (t)vt )∗ai (t) = 0. To

prove (47), one needs to remark that

dxi (t)φt,0 = dφ0,t (xi )φt,0 = (
dxi φ0,t

)−1

Now,

d

dt

(
dxi φ0,t

)−1 = −(
dxi φ0,t

)−1 d

dt

(
dxi φ0,t

)(
dxi φ0,t

)−1

= −(
dxi φ0,t

)−1(
dφ0,t (xi )vt dxi φ0,t

)

×(
dxi φ0,t

)−1

= dxi (t)φt,0dxi (t)vt

Hence we get the following geodesic evolution in
the orbit of landmarks.

Proposition 3 (Landmark Transport). The land-
marks are transported along the geodesic according
to the following equations with velocity vector field
satisfying

vt = L−1

(
n∑

i=1

δ∗
xi (t)ai (t)

)

=
n∑

i=1

K (xi (t), .)ai (t)

where K(x, y) is the Green kernel associated with L:3






dai

dt
(t) + (dxi (t)vt )

∗ai (t) = 0,

dxi

dt
(t) − vt (xi (t)) = 0.

(49)

Note that the expression of vt from Eq. (48) can be
introduced into the system (49), yielding an evolution
equation which only depends on the landmarks in the
orbit.

We notice the reduction of the vector field to the
range space of the Green’s kernels travelling over the
landmark trajectories is as in [17].

There is a straightforward extension of this re-
sult to geodesic curve evolution, in which x(0) is a
parametrized curve σ �→ x(σ ) for σ ∈ [0, L] and

Lv0 =
∫ L

0
δ∗

x(0,σ )ν0(σ )dσ

where ν0(σ ) is normal to x(0). In this case, we have

Lvt =
∫ L

0
δ∗

x(t,σ )νt (σ )dσ

with

• ∂νt

∂t
(t, σ ) + (

dx(t,σ )vt
)∗

ν(t, σ ) = 0,

• ∂x

∂t
(t, σ ) − vt (x(t, σ ) = 0.

6.2. Geodesic Image Evolution

Assume here that dµ = α(x)dx has a density with
respect to Lebesgue’s measure on �. In this case,
dµt = |dφt0|α ◦ φt0dx and

Lvt = |dφt0|α ◦ φt0∇ It (50)

From the conservation of momentum in Lagrangian
coordinates for image based motion, we get for
Lv0 = α0∇ I0 that Lvt = αt |dφt,0|∇ It where αt =
α0 ◦ φt,0, It = I0 ◦ φt,0. Let zt = αt |dφt,0| so that
Lvt = zt∇ It .

Since d
dt (zt ◦ φ0,t ) = d

dt (|dφ0,tφt,0|α0) = −div(vt ) ◦
φ0,t |dφ0,tφt,0|α0 we get dzt

dt +dzt (vt )+div(vt )zt . More-
over, we get easily ∂ It

∂t + 〈∇ It , νt 〉 = 0. Hence we get
the following geodesic evolution equation in image
space.

Proposition 4 (Image Transport). The image is trans-
ported along the geodesic according to the following
equations: with vector field vt = L−1(zt∇ It ):

• dzt

dt
+ dzt (vt ) + div(vt )zt = 0,

• ∂ It

∂t
+ 〈∇ It , vt 〉 = 0.

Notice that these equations appear as a limit case
of the evolution equations which have been studied in
[34] for image comparison.

As illustrated above, the pair (I0, µ) provides a de-
vice for modeling deformations. In the cases we have
studied, I0 was representing some geometrical struc-
ture (a curve, an image), which evolved with time ac-
cordi to the generated deformation, and µ, essentially
quantifies the speed and direction of the deformation.

We get from this a natural way to represent the de-
formation of a template. Using Grenander’s original
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Figure 2. Three random deformations of an image.

Figure 3. Figure shows objects under translation (column 1), scale (column 2), and mitochondria 1 and 2.

terminology, I0 would precisely be the template and
µ is the generator of the deformation. Thus, fixing I0,
and letting µ vary, we get a model which represents
perturbations of the template.

An example of deformations of an image is provided
in Fig. 2. The images have been obtained by solving
Eq. (50) from an initial image g of a slice of macaque
brain, and taking

α(x) = X (x)

1 + |∇x I0|
where X is a Gaussian process.

7. Computational Results

The following results illustrate the computation of the
momentum Lv0 = α0∇ I0 (as described in Section
6.2) from geodesic paths between two images. These

geodesics are computed using F. Beg’s implementa-
tion of image matching, as described in [4]. In these
experiments, the operator L is (∇ + c Identity),2 im-
plemented via fast Fourier transform. The shooting al-
gorithm solves the equation provided in Proposition 4
with initial condition (I0, z0 = α0).

Figure 3 shows the three objects studied, a smooth
Gaussian bump for shift, circles for scale, and two
mitochondria examin g both forward and inverse
shooting.

Shown in Fig. 4–6 are examples illustrating the im-
age based momentum and the diffeomorphisms gener-
ated via geodesic shooting. Figure 4 shows the results
of the translation experiment. Panels 1 and 2 show I0

and I1; panel 3 shows the diffeomorphism generated
via geodesic shooting applied to I0, and illustrates how
solving the conservation of momentum equation allows
to recover I1 from I0 and Lv0.

Shown in panel 4 is the density α showing the
concentration near the boundary of I0. Superposed in
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Figure 4. Rows 1, 2: Results from translation experiment. Panels 1, 2, and 3 show I0, I1, I0 ◦ φ10. Panels 4, 5 and 6 show α0, Lv0 versus
α0∇ I0, and V0 and L−1α∇ I0.

Figure 5. Rows 1, 2: Results from scale experiment. Panels 1, 2, and 3 show I0, I1, I0 ◦ φ10. Panels 4, 5 and 6 show α0, Lv0 versus α0∇ I0,
and V0 and L−1α∇ I0.

panel 5 are the predicted directions of the momentum,
given by α0∇ I0, and the value Lv0 obtained from
Beg’s algorithm. In almost all case they appear as one
line indicating a good accuracy of the algorithm. Panel

6 indicates that the vector field V0 demonstrating that
while α and the momentum Lv0 are highly local-
ized, the velocity of motion extends over the entire
object.
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Figure 6. Results from mitochondria 2. Panels 1, 2, and 3 show I1, I0, I1 ◦ φ10. Panels 4, 5 and 6 show α0, LV0 versus α0∇ I0, and V0.

Shown in Fig. 5 are similar results for the scale
experiment.

Shown in Fig. 6 are two sets of results for the
geodesic shooting of the mitochondria. The organi-
zation of the results are the same as for the translation
and scale experiments. Shown in Fig. 6 are two sets of
results for the geodesic shooting of the mitochondria.
The organization of the results are the same as for the
translation and scale experiments.

Appendix A: Proof of Theorem 3

Proof: Since g⊥
It

is closed, we have to show that for
almost all t, vt = pIt (vt ). Denote ht

.= vt − pIt (vt ).
For ε ∈ [0, 1], let vε

t
.= vt + εht , and φε

t
.= φvε

t (one
can check, but we skip the argument, that t → ht is
measurable and belongs to L2([0, 1], g), so that this
variation is valid).

The proof essentially consists in showing that, for
all 0 ≤ t ≤ 1

I0 ◦ φt0 = I0 ◦ φε
t0. (51)

Indeed, assume that this result is proved. Consider-
ing ε = 1 and t = 1, we deduce that I1 = I0 ◦ φ1

1,0.
However, since 〈ht , vt 〉L = 〈vt − pIt (vt ), vt 〉L = 0,
we get |vt + ht |2L = |vt |2L − |ht |2L . Since t → vt cor-
responds to paths with lowest kinetic energy from I0

to I1, we deduce that
∫ 1

0 |ht |2L dt = 0 and the proof is
ended.

We now return to Eq. (51). Using the formula

dφt0(x)

dt
= −dxφt0vt (x)

and letting qε
t (x) = φt0 ◦ φε

0t (x), we obtain

∂qε
t (x)

∂t
= −dφε

0t (x)φt0vt ◦ φε
0t (x)

+dφε
0t (x)φt0

(
vt ◦ φε

0t (x) + εht ◦ φε
0t (x)

)

= εdφε
0t (x)φt0ht ◦ φε

0t (x)

We first prove Eq. (51) under the assumption that I0 is
C1. From the computation above, we have

∂

∂t

(
I0 ◦ qε

t

)
(x) = ε

〈∇φt0(φε
0t (x))

I0, dφε
0t (x)φt0ht ◦ φε

0t (x)
〉
Rd

= ε
〈∇φε

0t (x) It , ht (φ
ε
t0(x)))

〉
Rd = 0

since by definition of the projection pIt (vt ), we have
for any x ∈ �

〈ht (x),∇ It (x)〉Rd = 〈vt (x),

∇ It (x)〉Rd − 〈pIt (vt ),∇ It (x)〉Rd = 0.
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Figure 7. Results from mitochondria 1. Panels 1, 2, and 3 show I0, I1, I0 ◦ φ10. Panels 4, 5 and 6 show α0, LV0 versus α0∇ I0, and V0.

This implies I0 ◦ φt,0 ◦ φε
0,t = I0 which yields Eq.

(51) in this case. When I0 is not smooth, the proof goes
by showing that

∂

∂t

∫

�

I0 ◦ qε
t (x) f (x)dx =

∫

�

It (x) div
(
ht g

ε
t

)
(x)dx

for smooth f on � and gε
t ◦ φε

t |dφε
t | = f which can

be done either by a direct (heavy) computation, or by
using a density argument, based on the fact that, by the
divergence theorem, this is true for smooth I0 (we skip
the details). �

Notes

1. These arguments are purely formal since ht includes the Lie
bracket which cannot be guaranteed to belong to g (in which case
our variation would not be justified).

2. When I has smooth level sets, we say that a vector field ν is
normal to its level sets when, denoting by �i the set {I ≤ i}, v(x)
is normal to ∂�i if x ∈ ∂�i for some i and x = 0 otherwise.

3. The explicit form for L−1 depending on the kernel K is defined
as follows. For any x, y ∈ �, the bilinear form Kx,y on R

d × R
d

defined by

Kxy (a, b)
.= 〈δ∗

x a, δ∗
y b〉g∗ = (δ∗

y b, L−1(δ∗
x a))

= 〈L−1(δ∗
x a)(y), b〉

Rd (49)
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