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Abstract

Principal component analysis has proven to be useful for
understanding geometric variability in populations of pa-
rameterized objects. The statistical framework is well un-
derstood when the parameters of the objects are elements
of a Euclidean vector space. This is certainly the case when
the objects are described via landmarks or as a dense col-
lection of boundary points. We have been developing repre-
sentations of geometry based on the medial axis description
or m-rep. Although this description has proven to be effec-
tive, the medial parameters are not naturally elements of
a Euclidean space. In this paper we show that medial de-
scriptions are in fact elements of a Lie group. We develop
methodology based on Lie groups for the statistical analysis
of medially-defined anatomical objects.

1. Introduction

Shape analysis is emerging as an important area of image
processing and computer vision. Model-based approaches
[4, 3, 20, 12] are popular due to their ability to robustly rep-
resent objects found in images. Principal component analy-
sis (PCA) [10] is a prevalent technique for describing model
variability. However, PCA is only applicable when model
parameters are elements of a Euclidean vector space.

The focus of our research has been the application of
shape analysis for medical image processing to improve
both the accuracy of medical diagnosis as well as the under-
standing of processes behind growth and disease [5]. In our
previous work [11] we have developed methodology based
on medial descriptions called m-reps to quantify shape vari-
ability and explain it in intuitive terms such as local thick-
ness, bending and widening.

In this paper we show that m-rep models are elements
of a Lie group. We develop a framework that extends the
notion of PCA to Lie groups, and we apply it to the sta-
tistical analysis of shape using medial representations. As
the medial representation is fundamental to our analysis, we
describe it briefly.
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Figure 1: Medial atom with a cross-section of the boundary
surface it implies (left). An m-rep model of a kidney and its
boundary surface (right).

1.1. M-Rep Overview

The medial representation used is based on the medial axis
of Blum [1]. In this framework, a geometric object is repre-
sented as a set of connected continuous medial manifolds.
For 3D objects these medial manifolds are formed by the
centers of all spheres that are interior to the object and tan-
gent to the object’s boundary at two or more points. The
medial description is defined by the centers of the inscribed
spheres and by the associated scalar field of their radii. Each
continuous segment of the medial manifold represents a me-
dial figure. In this paper we focus on 3D objects that can be
represented by a single medial figure.

We sample the medial manifoldM over a spatially reg-
ular lattice. Each sample point also includes first derivative
information of the medial position and radius. The elements
of this lattice are calledmedial atoms. A medial atom (Fig.
1) is defined as a 4-tuplem = {x, r,F, θ}, consisting of:
x ∈ R3, the center of the inscribed sphere,r ∈ R+, the
local width defined as the radius of the sphere,F ∈ SO(3)
an orthonormal local frame parameterized by(b,b⊥,n),
wheren is the normal to the medial manifold,b is the di-
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rection in the tangent plane of the fastest narrowing of the
implied boundary sections, andθ ∈ [0, π) the object an-
gle determining the angulation of the implied sections of
boundary relative tob. The medial atom implies two op-
posing boundary points,y0,y1, with respective boundary
normals,n0,n1, which are given by

n0 = cos(θ)b− sin(θ)n, n1 = cos(θ)b + sin(θ)n,

y0 = x + rn0, y1 = x + rn1.

For three dimensional slab-like figures (Fig. 1) the lat-
tice of medial atoms is a quadrilateral meshmij , (i, j) ∈
[1,m] × [1, n]. The sampling density of medial atoms in
a lattice is inversely proportional to the radius of the me-
dial description. Given an m-rep figure, we fit a smooth
boundary surface to the model. We use a subdivision sur-
face method [19] that interpolates the boundary positions
and normals implied by each atom.

1.2. Discrete M-Rep as a Point on a Lie Group
In this section we show that the set of medial atoms is a Lie
group. A medial atom’s position, orientation, and radius to-
gether form a 3D similarity transformation, that is, a com-
bined translation, rotation, and scale. The object angle is a
2D rotation. Thus, the set of all medial atoms forms a group
M = S(3)×SO(2), whereS(3) is the Lie group of 3D sim-
ilarity transformations, andSO(2) is the Lie group of 2D
rotations. SinceM is the direct product of two Lie groups,
it also is a Lie group. Strictly speaking, the groupM is a
transformation group thatactson medial atoms. However,
any medial atom may be represented inM as the transfor-
mation of a fixed identity atom, that is, the atom centered
at the origin, with standard coordinate frame, radius 1, and
object angle 0.

Now consider the set of m-rep models that consist of a
m × n grid of medial atoms. These models form the space
Mmn. Since this is simply the direct product ofmn copies
of M , it is a Lie group. Again, this is really a transforma-
tion group acting on the identity model, that is, the model
consisting of anm×n lattice of identity atoms. Now, given
the medial descriptions of a population of objects, we may
consider each geometric model as a point on the Lie group
Mmn. Since Lie group theory is essential to our work, we
review it here.

1.3. Lie Groups
Here we present a brief overview of Lie groups. For a de-
tailed treatment see [7]. A Lie groupG is a differentiable
manifold that also forms an algebraic group, where the two
group operations,

µ : (x, y) 7→ xy : G×G → G Multiplication,

ι : x 7→ x−1 : G → G Inverse,

are differentiable mappings.
A Lie algebrag is a vector space with a bilinear product

[·, ·] : g× g → g, called the Lie bracket, satisfying

[X, Y ] = −[Y, X] Antisymmetry,

[[X, Y ], Z] = [X, [Y, Z]]− [Y, [X, Z]] Jacobi Identity,

for all X, Y, Z ∈ g. Let e denote the identity element of
a Lie groupG. The tangent space ate, TeG, forms a Lie
algebra, which we will denote byg.

The exponential map,exp : g → G, provides a method
for carrying vectors in the tangent spaceTeG into G. Given
a vectorv ∈ g, the pointexp(v) ∈ G is obtained by flowing
to time1 along the unique geodesic emanating frome with
initial velocity vectorv. The exponential map is a diffeo-
morphism of a neighborhood of0 in g with a neighborhood
of e in G. The inverse of the exponential map is called the
log map.

For real numbersx andy the exponential map satisfies
the identityexp(x) exp(y) = exp(x+y). This identity does
not hold for noncommutative Lie groups, such asSO(3)
andS(3). In general define theproduct in logarithmic co-
ordinatesas a mappingµ : g× g → g such that

exp(X) exp(Y ) = exp(µ(X, Y )).

A Taylor series expansion forµ about the point(0, 0) is
given by the Cambell-Baker-Hausdorff (CBH) formula:

µ(X, Y ) = X + Y +
1
2
[X,Y ] +O(|(X,Y )|3). (1)

1.4. Matrix Groups
The most common examples of Lie groups, and those which
have the greatest application to computer vision, are the
matrix groups [6]. These are all subgroups of the general
linear groupGL(n,R), the group of nonsingularn × n
real matrices. The Lie algebra associated withGL(n,R)
is L(Rn,Rn), the set of alln × n real matrices. The Lie
bracket in this case is the commutator,

[X, Y ] = XY − Y X X, Y ∈ L(Rn,Rn)

The exponential map of a matrixX ∈ L(Rn,Rn) is the
standard matrix exponent defined by the infinite series

exp(X) =
∞∑

k=0

1
k!

Xk.

Among linear transformations inR3, the group of rota-
tions SO(3) and the group of rigid motionsSE(3) have
been well studied [16]. Related work includes the statisti-
cal analysis of directional data [14] and the study of shape
spaces as complex projective spaces [13]. It is well known
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that SO(3) is a Lie subgroup ofGL(3,R), with corre-
sponding Lie algebraso(3), the space of skew-symmetric
3 × 3 matrices. Also, the exponential ofA ∈ so(3), with

θ =
√

1
2
tr(ATA) in [0, π), is the rotation matrix given by

Rodrigues’ formula [15]

exp(A) =





I3, θ = 0,

I3 +
sin θ

θ
A +

1− cos θ

θ2
A2, θ ∈ (0, π).

(2)
The logarithm for a matrixR ∈ SO(3) is the matrix in
so(3) given by

log(R) =





0, θ = 0,
θ

2 sin θ
(R−RT ), |θ| ∈ (0, π),

(3)

whereθ satisfiestr(R) = 2 cos θ + 1.
The similarity transform group,S(3), has until now not

been studied in this framework, and we now derive equa-
tions for the associated exponential and log maps. Using
homogeneous coordinates, elements inS(3) can be repre-
sented by4× 4 matrices of the form

M =
[
sR v
0 1

]
,

wheres is a positive scalar,R ∈ SO(3) is a3× 3 rotation
matrix, andv is a column vector inR3. The identity of
the group isI4, the4 × 4 identity matrix. Lets(3) be the
Lie algebra corresponding toS(3). This corresponds to the
tangent space at the identity. Its elements can be represented
as

T =
[
σI3 + A u

0 0

]
, (4)

whereσ ∈ R, A is a 3 × 3 skew-symmetric matrix, and
u ∈ R3.

We can derive an explicit formula for the exponential
map for a matrixT ∈ s(3), given by (4), with θ =√

1
2
tr(ATA) in [0, π). It is easy to see that fork ≥ 1,

Tk =
[
(σI3 + A)k (σI3 + A)k−1u

0 0

]
.

As a consequence,

exp(T) = I4 +
∞∑

k=1

1
k!

Tk =
[
exp(σI3 + A) Pu

0 1

]
,

where

P =
∑

k≥1

(σI3 + A)k−1

k!
. (5)

Notice thatexp(σI3 + A) = eσ exp(A) since rotation and
scaling commute. The matrixR = exp(A) is a proper ro-
tation matrix, and can be calculated by Rodrigues’ formula
(2).

The matrixP can be formally written as

P = (σI3 + A)−1
(

exp(σI3 + A)− I3

)
.

However,σI3 + A might not be invertible. Again, using
Rodrigues’ formula, we can rewriteP as

P =
eσ − 1

σ
I3 +

1
θ2 + σ2

(σeσ sin θ

θ
+ 1− eσ cos θ

)
A

+
1

θ2 + σ2

(
σeσ 1− cos θ

θ2
− eσ sin θ

θ
+

eσ − 1
σ

)
A2.

(6)

Whenσ = 0, P is defined as the limit

lim
σ→0

P = I3 +
1− cos θ

θ2
A +

θ − sin θ

θ3
A2.

In conclusion, ifT ∈ s(3) is given by (4), then

exp(T) = exp
( [

σI3 + A u
0 0

] )
=

[
sR Pu
0 1

]
, (7)

wheres = eσ, R andP are given by (2) and (6), respec-
tively. Moreover, fort ∈ R, the matrixexp(tT) can be
computed in a similar way. On the other hand, the loga-
rithm for a matrix inS(3) is

log
( [

sR v
0 1

] )
=

[
σI3 + A P−1v

0 0

]
, (8)

whereP is defined by (6),σ = ln(s), andA = log(R) is
given by (3).

2. Means in Lie Groups
In this section we formulate two different notions of means
on Lie groups. We present an algorithm for computing av-
erages inS(3) and an algorithm for computing the mean of
a collection of m-rep models.

2.1. Intrinsic vs. Extrinsic Means
Given a set of pointsx1, . . . , xn ∈ Rd, the arithmetic mean
x̄ = 1

n

∑n
i=1 xi is the point that minimizes the sum-of-

squared Euclidean distances to the given points, i.e.,

x̄ = arg min
x∈Rd

n∑

i=1

||x− xi||2.

Since a general Lie groupG may not form a vector
space, the notion of an additive mean is not necessarily
valid. However, like the Euclidean case, the mean of a set of
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points onG can be formulated as the point which minimizes
the sum-of-squared distances to the given points. This for-
mulation depends on the definition of distance. One way
to define distance onG is to embed it in a Euclidean space
and use the induced Euclidean distance. This notion of dis-
tance is extrinsic toG, that is, it depends on the ambient
space and the choice of embedding. Given an embedding
Φ : G → Rd, define theextrinsic mean[9] of a collection
of pointsx1, . . . , xn ∈ G as

µΦ = arg min
x∈G

n∑

i=1

||Φ(x)− Φ(xi)||2.

Given the above embedding ofG, we can also compute
the arithmetic (Euclidean) mean of the embedded points and
then project this mean onto the manifoldG. This projected
mean is equivalent to the above definition of the extrinsic
mean (see [17]). Define a projection mappingπ : Rd → G
as

π(x) = arg min
s∈G

||Φ(s)− x||2.

Then the extrinsic mean is also given by

µΦ = π
( 1

n

n∑

i=1

Φ(xi)
)
.

A more natural choice of distance is the Riemannian dis-
tance onG. The Riemannian distance between two points is
the length of the shortest geodesic curve between the points.
This definition of distance depends only on the intrinsic ge-
ometry ofG. We now define theintrinsic meanof a collec-
tion of pointsx1, . . . , xn ∈ G as the minimizer inG of the
sum-of-squared Riemannian distances to each point. Thus
the intrinsic mean is

µ = arg min
x∈G

n∑

i=1

d(x, xi)2,

whered(·, ·) denotes Riemannian distance onG.

2.2. Computation of Intrinsic Means in S(3)

Averages inSO(3) have been well studied [2, 15]. How-
ever, averaging inS(3) has received less attention. Since the
application to m-rep models requires analysis of 3D similar-
ity transformations, we develop an algorithm for computing
intrinsic means inS(3). The algorithm we present proceeds
by iteratively computing first-order approximations to the
true mean. This algorithm is similar in nature to the tech-
nique found in [2] for computing averages of spherical data.
Our method is a generalization to averages inS(3).

The Riemannian distance between two pointsS1, S2 ∈
S(3) is given by

d(S1, S2) = || log(S−1
1 S2)||. (9)

Thus the intrinsic mean of a collection of pointsS1, . . . , Sn

is

µ = arg min
S∈S(3)

n∑

i=1

|| log(S−1
i S)||2,

where the norm is the Frobenius matrix norm.
Using the CBH formula (1) up to first-order terms, we

may approximate the Riemannian distance in (9) with the
product in logarithmic coordinates as

d(S1, S2) ≈ || log(S2)− log(S1)||. (10)

Now the sum-of-squared approximated distances is mini-
mized by the arithmetic mean of the log of the points. The
first-order approximation to the intrinsic mean is given by

µ̂ = exp
( 1

n

n∑

i=1

log(Si)
)

Notice thatµ̂ is an approximation via the tangent space
to the identity element. According to the CBH formula, the
error in this approximation is larger when the points are far
from the identity. Thus we left-multiply all points bŷµ−1

so thatµ̂ is moved to the identity. Now we compute the
mean of these residual points and combine this withµ̂ to
arrive at a new approximation to the mean. This process is
repeated until the mean of the residuals is sufficiently near
the identity. Summarizing, we have

Algorithm 1:
Input: S1, . . . , Sn ∈ S(3)
Output:µ ∈ S(3), the intrinsic mean

µ = I4
Do

∆Si = µ−1Si

∆µ = exp( 1
n

∑n
i=1 log(∆Si))

µ = µ∆µ
While || log(∆µ)|| > ε,

where the exponential and log mappings are given by (7)
and (8), respectively. Following the argument in [2], this al-
gorithm is a gradient descent method, and the true intrinsic
mean is a stable point of the algorithm.

2.3. M-rep Averages
Algorithm 1 is easily extended to the computation of in-
trinsic means in the medial atom groupM . Recall that
M = S(3) × SO(2). Therefore, the corresponding Lie
algebra ism = s(3) × so(2). The exponential map form
is defined as the direct product of the exponential maps on
s(3) andso(2). Likewise, the log map onM is defined as
the direct product of the log maps onS(3) andSO(2). Thus
by substitutingM for S(3) in Algorithm 1, we can compute
means of medial atoms.
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Figure 2: Boundary surface display of the 12 original m-
rep kidney models (left). The intrinsic mean of the kidney
models (right).

Since theS(3) andSO(2) components ofM are inde-
pendent, the intrinsic mean onM is the direct product of the
means of theS(3) andSO(2) components. The mean of
the atoms’ similarity transforms is computed by Algorithm
1. The mean of the object angles is computed separately as
the arithmetic mean. Notice the arithmetic mean is valid in
this case because the object angles are within[0, π). It is
also the true intrinsic mean, sinceSO(2) is a commutative
group. Now the mean of a collection of medial models in
Mmn is computed as them × n means of the correspond-
ing atoms. Figure 2 shows twelve m-rep models of human
kidneys and the resulting intrinsic mean of the models, com-
puted by the above algorithm.

3. Principal Geodesic Curves
In a vector spaceV , each unit vectorv determines a
one-dimensional subspaceSv = {tv : t ∈ R}. Let
v1,v2, . . . ,vm ∈ V . Without loss of generality, assume
the mean vector of{vi} is 0. The first principal component
can then be characterized as the one-dimensional subspace
Su(1) whereu(1) satisfies

u(1) = arg min
‖v‖=1

m∑

i=1

‖vi − (vi · v)v‖2.

In other words, ifdi(v) is the distance fromvi to Sv, then
the first principal direction is defined by the vectorv such
that

∑m
i=1 d2

i (v) is minimized. The eigenvalue associated
with the first component is simply given by

λ1 =
1
m

m∑

i=1

(vi · u(1))2,

wherevi · u(1) is the projection ofvi onto the linear sub-
spaceSu(1) . Similarly, for k > 1, thek-th principal direc-

tion is defined recursively by the vector

u(k) = arg min
‖v‖=1

m∑

i=1

∥∥∥vi−
k−1∑

l=1

(vi ·u(l))u(l)− (vi ·v)v
∥∥∥

2

.

In this section, we generalize these concepts to finite dimen-
sional Lie groups.

Let G be a Lie group. The corresponding Lie algebrag
is a vector space. For an arbitrary unit vectorv ∈ g, we can
define a one-parameter subgroupHv of G as

Hv , {exp(tv) ∈ G : t ∈ R}, (11)

whereexp(·) is the exponential map. It is easy to see that
Hv is a geodesic curve inG whose tangent direction at the
identity is given byv. For anyg ∈ G, the distance fromg
to Hv is defined as

d(g, Hv) , min
t

d
(
g, exp(tv)

)
, (12)

where the distance on the right hand side is the geodesic
distance onG. Among all values oft such that (12) is min-
imized, lett∗ to be the one that has the smallest absolute
value. Theprojectionof g onHv is defined to beexp(t∗v).

Suppose thatg1, g2, . . . , gm are m elements of a Lie
groupG, and that the intrinsic mean of them isµ. Thefirst
principal geodesic curvefor these elements is defined as the
one parameter subgroupHu(1) of G, where

u(1) = arg min
‖v‖=1

m∑

i=1

d2(µ−1gi,Hv). (13)

Let pi,1 be the projection ofµ−1gi on Hu(1) , and define

g
(1)
i = p−1

i,1 µ−1gi. For k ≥ 2, thek-th principal geodesic

curve is defined by the vectoru(k) which is given recur-
sively by

u(k) = arg min
‖v‖=1

m∑

i=1

d2
(
g
(k−1)
i ,Hv

)
,

g
(k)
i = p−1

i,kg
(k−1)
i ,

(14)

wherepi,k is the projection ofg(k−1)
i onHu(k) .

Notice that the firstk principal curves yield a decompo-
sition for{gi}:

gi = µpi,1pi,2 · · · pi,kg
(k)
i , k ≥ 1, i = 1, . . . ,m.

Analogous to the eigenvalues in the linear case, we define
the energy associated with thek-th principal geodesic to be

λk =
1
m

m∑

i=1

t2i,k,

where ti,k is the geodesic distance betweenpi,k and the
identity.
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4. Approximating Principal Geodesic
Curves

Given the ability to compute geodesic distances onG, prin-
cipal geodesic analysis reduces to a nonlinear optimization
problem defined by (13) and (14). This optimization can
be impractical in high dimensions. For efficient computa-
tion, we now show that the principal geodesic curves can be
approximated via a linear PCA in the tangent space to the
mean,TµG. Using the CBH formula and the approximation
(10), equation (13) can be approximated as follows

u(1) = arg min
‖v‖=1

m∑

i=1

min
t

d2(µ−1gi, exp(tv))

≈ arg min
‖v‖=1

m∑

i=1

min
t
‖ log(µ−1gi)− tv‖2.

Noticing thatvi = log(µ−1gi), i = 1, . . . , m, are vectors
in the tangent spaceTµG, the above minimization problem
becomes the standard principal component analysis inTµG.

The geodesic curves defined via the exponential map-
ping Hu(k) = exp(tu(k)) are the approximations of the
principal geodesic curves defined in the previous section.

More precisely, for m-rep models we compute the prin-
cipal component analysis by

Algorithm 2:
Input: M-rep models,M1, . . . ,Mn ∈ Mmn

Output: Principal directions,u(k) ∈ TµMmn

Variances,λk ∈ R
µ = intrinsic mean of{Mi} (§2.3)
xi = log(µ−1Mi)
S = 1

n

∑n
i=1 xixT

i

{u(k), λk} = eigenvectors/eigenvalues ofS.

Analogous to linear PCA models, we may choose a sub-
set of the principal directionsu(k) that is sufficient to de-
scribe the variability of the m-rep shape space. New m-rep
models may be generated within this subspace of typical ob-
jects. Given a set of coefficients{α1, . . . , αl}, we generate
a new m-rep model by

M = µ exp
( l∑

k=1

αku(k)
)
,

whereαk is chosen to be within[−3
√

λk, 3
√

λk].

5. Results
In this section we present the results of applying our Lie
group PCA method to a population of medial models of the
human kidney (Fig. 2). The kidney m-rep models were
automatically generated by the method described in [18],

Figure 3: The first three modes of deformation for kid-
ney shapes. Each row displays the models corresponding
to {−3

√
λi,−1.5

√
λi, 0, +1.5

√
λi,+3

√
λi} along theith

principal component.

Figure 4: The same modes of deformation as Fig. 3 shown
from the side.
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which chooses the medial topology and sampling that is suf-
ficient to represent the population of objects. Twelve mod-
els were fit to hand segmentations of the kidneys in CT data.
The sampling on each m-rep model was3×5, and thus each
model was a point on the Lie groupM15.

A coarsely sampled boundary surface was obtained for
each model by taking the boundary points implied by each
medial atom. The kidneys were aligned using a generalized
Procrustes analysis [8] on these boundary points. The mean
object (Fig. 2) was generated as the mean of the twelve
aligned m-rep models, using the intrinsic mean computation
on M15 described in§2.3. A linear PCA was performed in
the tangent space to the intrinsic mean, as described in§4,
producing a PCA shape space. The first three modes are
shown in Figures 3 and 4.

6. Discussion
We present a new approach to describing shape variability
through principal component analysis of medial representa-
tions. While m-rep parameters are not linear vector spaces,
we show that they are indeed Lie groups. We develop meth-
ods for computing averages and principal component anal-
yses of m-reps.

We expect that the methods presented in this paper will
have application beyond m-reps. Lie group PCA is a
promising technique for describing the variability of data
that is inherently nonlinear. Statistics on linear models may
benefit from the addition of nonlinear information. For in-
stance the point distribution model [4] might be augmented
with surface normals, represented as orientations, and han-
dled under the Lie group framework.

We plan to extend our analysis to more complex m-rep
models. This includes objects consisting of several figures,
i.e., objects that have a branched medial axis. Also, we in-
tend to handle scenes containing multiple objects.
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